Lower Bound Techniques in the Comparison-Query Model and Applications to Inversion Minimization
by Ivan Hu, Dieter van Melkebeek, and Andrew Morgan
Theory of Computing, Volume 20(7), pp. 1-62, 2024
Bibliography with links to cited articles
[1] Michael Ben-Or: Lower bounds for algebraic computation trees. In Proc. 15th STOC, pp. 80–86. ACM Press, 1983. [doi:10.1145/800061.808735]
[2] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E. Tarjan: Time bounds for selection. J. Comput. System Sci., 7(4):448–461, 1973. [doi:10.1016/S0022-0000(73)80033-9]
[3] Hans L. Bodlaender, Fedor V. Fomin, Arie M. C. A. Koster, Dieter Kratsch, and Dimitrios M. Thilikos: A note on exact algorithms for vertex ordering problems on graphs. Theory Computing Sys., 50(3):420–432, 2012. [doi:10.1007/s00224-011-9312-0]
[4] Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M. Jungers, and J. Ian Munro: An efficient algorithm for partial order production. SIAM J. Comput., 39(7):2927–2940, 2010. [doi:10.1137/090759860]
[5] Svante Carlsson and Jingsen Chen: The complexity of heaps. In Proc. 3rd Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’92), pp. 393–402. SIAM, 1992. ACM DL.
[6] Richard Degerman: Ordered binary trees constructed through an application of Kendall’s tau. Psychometrika, 47(4):523–527, 1982. [doi:10.1007/BF02293713]
[7] Dorit Dor and Uri Zwick: Selecting the median. SIAM J. Comput., 28(5):1722–1758, 1999. [doi:10.1137/S0097539795288611]
[8] Dorit Dor and Uri Zwick: Median selection requires (2 + ϵ)n comparisons. SIAM J. Discr. Math., 14(3):312–325, 2001. [doi:10.1137/S0895480199353895]
[9] David Eppstein: A permutohedron, 2007. LINK, see also Wikipedia article, accessed 11-07-2024.
[10] Guy Even, Joseph Naor, Baruch Schieber, and Madhu Sudan: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica, 20(2):151–174, 1998. [doi:10.1007/pl00009191]
[11] Gaston H. Gonnet and J. Ian Munro: Heaps on heaps. SIAM J. Comput., 15(4):964–971, 1986. [doi:10.1137/0215068]
[12] Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses Charikar: Beating the random ordering is hard: Every ordering CSP is approximation resistant. SIAM J. Comput., 40(3):878–914, 2011. [doi:10.1137/090756144]
[13] Michael Held and Richard M. Karp: A dynamic programming approach to sequencing problems. J. SIAM, 10(1):196–210, 1962. [doi:10.1137/0110015]
[14] Ivan Hu, Dieter van Melkebeek, and Andrew Morgan: Query complexity of inversion minimization on trees. In Proc. 34th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’23), pp. 2836–2866. SIAM, 2023. [doi:10.1137/1.9781611977554.ch107]
[15] Stasys Jukna, Alexander A. Razborov, Petr Savický, and Ingo Wegener: On P versus NP ∩ co-NP for decision trees and read-once branching programs. Comput. Complexity, 8(4):357–370, 1999. [doi:10.1007/s000370050005]
[16] Kanela Kaligosi, Kurt Mehlhorn, J. Ian Munro, and Peter Sanders: Towards optimal multiple selection. In Proc. 32nd Internat. Colloq. on Automata, Languages, and Programming (ICALP’05), pp. 103–114. Springer, 2005. [doi:10.1007/11523468_9]
[17] Richard M. Karp: Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Complexity of Computer Computations, pp. 85–103. Plenum Press/Springer, 1972. Available at ResearchGate. [doi:10.1007/978-1-4684-2001-2_9]
[18] Marek Karpinski and Warren Schudy: Faster algorithms for feedback arc set tournament, Kemeny rank aggregation and betweenness tournament. In Proc. Internat. Symp. on Algorithms and Computation (ISAAC’10), pp. 3–14. Springer, 2010. [doi:10.1007/978-3-642-17517-6_3]
[19] Claire Kenyon-Mathieu and Warren Schudy: How to rank with few errors. In Proc. 39th STOC, pp. 95–103. ACM Press, 2007. [doi:10.1145/1250790.1250806]
[20] Henry B. Mann and Donald R. Whitney: On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18(1):50–60, 1947. JSTOR.
[21] Stephen Melczer, Greta Panova, and Robin Pemantle: Counting partitions inside a rectangle. SIAM J. Discr. Math., 34(4):2388–2410, 2020. [doi:10.1137/20M1315828]
[22] George A. Miller: Psychological method to investigate verbal concepts. J. Mathematical Psychology, 6(2):169–191, 1969. [doi:10.1016/0022-2496(69)90001-7]
[23] Ryan O’Donnell: Analysis of Boolean Functions. Cambridge Univ. Press, 2014. [doi:10.1017/CBO9781139814782]
[24] Alfréd Rényi: Probability Theory. North-Holland 1970, Dover 2007.
[25] Arnold Schönhage: The production of partial orders. Astérisque, 38–39:229–246, 1976. NumDam.
[26] Igor S. Sergeev: On the upper bound of the complexity of sorting. Comput. Math. and Math. Physics, 61(2):329–346, 2021. [doi:10.1134/S0965542521020111]
[27] Richard P. Stanley and Fabrizio Zanello: Some asymptotic results on q-binomial coefficients. Annals of Combinatorics, 20(3):623–634, 2016. [doi:10.1007/s00026-016-0319-8]
[28] Lajos Takács: Some asymptotic formulas for lattice paths. J. Stat. Planning and Inference, 14(1):123–142, 1986. [doi:10.1016/0378-3758(86)90016-9]
[29] Andrew Chi-Chin Yao: Probabilistic computations: Toward a unified measure of complexity. In Proc. 18th FOCS, pp. 222–227. IEEE Comp. Soc., 1977. [doi:10.1109/SFCS.1977.24]