Separating $k$-Player from $t$-Player One-Way Communication, with Applications to Data Streams

by Elbert Du, Michael Mitzenmacher, David Woodruff, and Guang Yang

Theory of Computing, Volume 19(10), pp. 1-44, 2023

Bibliography with links to cited articles

[1]   Farid Ablayev: Lower bounds for one-way probabilistic communication complexity and their application to space complexity. Theoret. Comput. Sci., 157(2):139–159, 1996. [doi:10.1016/0304-3975(95)00157-3]

[2]   Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff: New characterizations in turnstile streams with applications. In Proc. 31st Comput. Complexity Conf. (CCC’16), pp. 20:1–22. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. ACM DL.

[3]   Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar: An information statistics approach to data stream and communication complexity. J. Comput. System Sci., 68(4):702–732, 2004. [doi:10.1016/j.jcss.2003.11.006]

[4]   Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson: A direct sum theorem for corruption and the multiparty NOF communication complexity of set disjointness. In Proc. 20th IEEE Conf. on Comput. Complexity (CCC’05), pp. 52–66. IEEE Comp. Soc., 2005. [doi:10.1109/CCC.2005.1]

[5]   Mark Braverman and Ankit Garg: Public vs private coin in bounded-round information. In Proc. 41st Internat. Colloq. on Automata, Languages, and Programming (ICALP’14), pp. 502–513. Springer, 2014. [doi:10.1007/978-3-662-43948-7_42]

[6]   Joshua Brody, Harry Buhrman, Michal Koucký, Bruno Loff, Florian Speelman, and Nikolay K. Vereshchagin: Towards a reverse newman’s theorem in interactive information complexity. Algorithmica, 76(3):749–781, 2016. Preliminary version in CCC’13. [doi:10.1007/s00453-015-0112-9]

[7]   Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Chi-Chih Yao: Informational complexity and the direct sum problem for simultaneous message complexity. In Proc. 42nd FOCS, pp. 270–278. IEEE Comp. Soc., 2001. [doi:10.1109/SFCS.2001.959901]

[8]   Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan: Comparing data streams using Hamming norms (how to zero in). IEEE Trans. Knowledge Data Engr., 15(3):529–540, 2003. [doi:10.1109/TKDE.2003.1198388]

[9]   AndrĂ© Gronemeier: Asymptotically optimal lower bounds on the NIH-multi-party information complexity of the AND-function and Disjointness. In Proc. 26th Symp. Theoret. Aspects of Comp. Sci. (STACS’09), pp. 505–516. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2009. [doi:10.4230/LIPIcs.STACS.2009.1846, arXiv:0902.1609]

[10]   Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian: Learning-based frequency estimation algorithms. In Int. Conf. Learning Representations (ICLR’19). ICLR, 2019. OpenReview.

[11]   Piotr Indyk: Stable distributions, pseudorandom generators, embeddings, and data stream computation. J. ACM, 53(3):307–323, 2006. [doi:10.1145/1147954.1147955]

[12]   T. S. Jayram: Hellinger strikes back: A note on the multi-party information complexity of AND. In Proc. 13th Internat. Workshop on Randomization and Computation (RANDOM’09), pp. 562–573. Springer, 2009. [doi:10.1007/978-3-642-03685-9_42]

[13]   Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P. Woodruff: Learning-augmented data stream algorithms. In Int. Conf. Learning Representations (ICLR’20). ICLR, 2020. OpenReview.

[14]   Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff: Fast moment estimation in data streams in optimal space. In Proc. 43rd STOC, pp. 745–754. ACM Press, 2011. [doi:10.1145/1993636.1993735, arXiv:1007.4191]

[15]   Daniel M. Kane, Jelani Nelson, and David P. Woodruff: On the exact space complexity of sketching and streaming small norms. In Proc. 21st Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’10), pp. 1161–1178. SIAM, 2010. ACM DL.

[16]   Daniel M. Kane, Jelani Nelson, and David P. Woodruff: An optimal algorithm for the distinct elements problem. In Proc. 29th Symp. on Principles of Database Systems (PODS’10), pp. 41–52. ACM Press, 2010. [doi:10.1145/1807085.1807094]

[17]   Ilan Kremer, Noam Nisan, and Dana Ron: On randomized one-round communication complexity. Comput. Complexity, 8(1):21–49, 1999. Errata (2001). [doi:10.1007/s000370050018]

[18]   Eyal Kushilevitz: Communication complexity. Adv. in Computers, 44:331–360, 1997. [doi:10.1016/S0065-2458(08)60342-3]

[19]   Thodoris Lykouris and Sergei Vassilvitskii: Competitive caching with machine learned advice. J. ACM, 68(4):24:1–25, 2021. Preliminary version in PMLR 2018. [doi:10.1145/3447579, arXiv:1802.05399]

[20]   Michael Mitzenmacher: Scheduling with predictions and the price of misprediction. In Proc. 11th Innovations in Theoret. Comp. Sci. Conf. (ITCS’20), pp. 14:1–18. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPICS.ITCS.2020.14]

[21]   Michael Mitzenmacher and Sergei Vassilvitskii: Algorithms with predictions. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of Algorithms, pp. 646–662. Cambridge Univ. Press, 2020. [doi:10.1017/9781108637435.037]

[22]   Christos H. Papadimitriou and Michael Sipser: Communication complexity. J. Comput. System Sci., 28(2):260–269, 1984. Preliminary version in STOC’82. [doi:10.1016/0022-0000(84)90069-2]

[23]   Emanuele Viola: The communication complexity of addition. Combinatorica, 35(6):703–747, 2015. Preliminary version in SODA’13. [doi:10.1007/s00493-014-3078-3]

[24]   David P. Woodruff and Guang Yang: Separating k-player from t-player one-way communication, with applications to data streams. In Proc. 46th Internat. Colloq. on Automata, Languages, and Programming (ICALP’19), pp. 1–14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019. [doi:10.4230/LIPIcs.ICALP.2019.97]

[25]   David P. Woodruff and Qin Zhang: Tight bounds for distributed functional monitoring. In Proc. 44th STOC, pp. 941–960. ACM Press, 2012. [doi:10.1145/2213977.2214063]