
THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33
www.theoryofcomputing.org

SPECIAL ISSUE: CCC 2020

Multiparty Karchmer–Wigderson Games

and Threshold Circuits

Alexander Kozachinskiy
∗

Vladimir Podolskii
†

Received July 16, 2020; Revised May 8, 2022; Published June 12, 2022

Abstract. We propose a generalization of the Karchmer–Wigderson communication

games to the multiparty setting. Our generalization turns out to be tightly connected

to circuits consisting of threshold gates. This allows us to obtain new explicit

constructions of such circuits for several functions. In particular, we provide an

explicit (polynomial-time computable) log-depth monotone formula for the Majority

function, consisting only of 3-bit majority gates and variables. This resolves a

conjecture of Cohen et al. (CRYPTO’13).

1 Introduction

Karchmer and Wigderson established a tight connection between circuit depth and communica-

tion complexity [10] (see also [12, Chapter 9]). They showed that for every Boolean function

Aconference version of this paper appeared in the Proceedings of the 35thComputational ComplexityConference,

2020 [11].

∗
The work of A. Kozachinskiy was performed at the Steklov International Mathematical Center and supported by

the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-265).

†
Supported by the HSE University Basic Research Program and by the Ministry of Science and Higher Education

of the Russian Federation (agreement no. 075-15-2022-265).

ACM Classification: F.1.3, F.1.2

AMS Classification: 68Q17, 68Q25

Key words and phrases: Karchmer–Wigderson games, threshold circuits, threshold gates,

majority function

© 2022 Alexander Kozachinskiy and Vladimir Podolskii
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2022.v018a015

http://dx.doi.org/10.4086/toc
https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16155
https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16155
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2022.v018a015

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

5 one can define a communication game whose communication complexity exactly equals the
depth of 5 in the standard De Morgan basis. This discovery turned out to be very influential in

Complexity Theory. A lot of circuit depth lower bounds as well as formula size lower bounds

rely on this discovery [9, 13, 4, 6, 3]. Karchmer–Wigderson games have been used also in

adjacent areas like Proof Complexity (see, e. g., [14]).

Karchmer–Wigderson games represent a deep connection of two-party communication

protocols with De Morgan circuits. Loosely speaking, one party is responsible for ∧-gates
and the other party is responsible for ∨-gates. In this paper, we address the question of what

would be a natural generalization of Karchmer–Wigderson games to the multiparty setting. Is it

possible to obtain in this way a connection with other types of circuits?

We answer positively to this question: we suggest such a generalization and show its

connection to circuits consisting of threshold gates. To motivate our results we first present

applications we get from this new connection.

1.1 Applications to circuits

It is well-known that the Majority function1, MAJ
2=+1

, can be computed by a monotone circuit of

depth$(log =). This was first proved by Ajtai, Komlós and Szemerédi [1]. More specifically, they

constructed a polynomial-time computable sorting network of depth $(log =), now known as

the AKS sorting network. In turn, any sorting network can be easily converted into a monotone

circuit of the same depth, computing the Majority function. Namely, we first replace every

comparator of the network by a pair of an ∧-gate and an ∨-gate, and then notice that the median

output of the network coincides with the Majority function.

The construction of Ajtai, Komlós and Szemerédi is fairly complicated, and has a large

constant before the log =. Valiant [15] gave a much simpler proof of the existence of a monotone

formula of depth $(log =) for the Majority function. He used the probabilistic method, so his

argument does not give an explicit construction of such a formula.

Several authors (see, e. g., [5, 2]) noticed that Valiant’s proof actually gives a formula of depth

$(log =) for MAJ
2=+1

, consisting only of MAJ
3
-gates (and, importantly, with no constants). Once

again, this formula is not explicit. On the other hand, the AKS sorting network gives an explicit

formula of depth$(log =) forMAJ
2=+1

which consists of∧-gates and∨-gates. There is no obvious
way to convert it into a formula which consists of MAJ

3
-gates and does not use constants2. For

brevity, we will call these formulas MAJ
3
-formulas. So there is a natural question—is it possible

to construct a "��3-formula of depth $(log =) for MAJ
2=+1

, deterministically in polynomial time?
This question was stated as a conjecture by Cohen et al. in [2]. First, they showed that the

answer is positive under some cryptographic assumptions. Second, they constructed (uncondi-

tionally) a polynomial-time computable MAJ
3
-formula of depth $(log =) which coincides with

MAJ= for all inputs in which the fraction of ones is bounded away from 1/2 by 2
−Θ(
√

log =)
.

1For technical convenience, in this paper we always assume that the Majority function has an odd number of

inputs.

2If we had constants, we could easily express the disjunction and the conjuction by a MAJ
3
gate: MAJ

3
(G, H, 0) =

G ∧ H, MAJ
3
(G, H, 1) = G ∨ H.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 2

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

We show that the conjecture of Cohen et al. is true (unconditionally).

Theorem 1.1. There exists a polynomial-time computable MAJ
3
-formula of depth$(log =) for MAJ

2=+1
.

We use the AKS sorting network in the proof. In fact, one can use any polynomial-time

computable construction of a monotone circuit of depth $(log =) for MAJ
2=+1

. We also obtain

the following general result:

Theorem 1.2. If there is a monotone formula (i. e., a formula consisting of ∧-gates and ∨-gates of fan-in 2)
for MAJ

2=+1
of size B, then there is a MAJ

3
-formula for MAJ

2=+1
of size $(B · =log

2
(3)) = $(B · =1.58...).

The transformation from the last theorem, however, is not efficient. We can make this

transformation polynomial-time computable, provided log
2
(3) is replaced by 1/(1 − log

3
(2)) ≈

2.71. In turn, we view Theorem 1.2 as a potential approach to obtain super-quadratic lower

bounds on the monotone formula size for MAJ
2=+1

. However, this approach requires better than

an =2+log
2
(3)

lower bound on the formula size of MAJ
2=+1

in the {MAJ
3
} basis. Arguably, this

basis may be easier to analyze than the standard monotone basis. The best known size upper

bounds in the {∧,∨} basis and the {MAJ
3
} basis are, respectively, $(=5.3) and $(=4.29) [7]. Both

bounds are due to Valiant’s method (see [7] also for the limitations of Valiant’s method).

We also study a generalization of the conjecture of Cohen et al. to threshold functions. By

THR
1
0 we denote the following Boolean function:

THR
1
0 : {0, 1}1 → {0, 1}, THR

1
0(G) =

{
1 G contains at least 0 ones,

0 otherwise.

For some reasons (to be discussed below) a natural generalizationwould be a question ofwhether

THR
:=+1

=+1
can be computed by formula of depth $(log =) which does not use constants and

consists only of THR
:+1

2
-gates. We will call such formulas &:-formulas (note that &2-formulas

are MAJ
3
-formulas, because THR

3

2
= MAJ

3
). This question was also addressed by Cohen et al.

in [2]. First, they observed that there is a construction of depth $(=) (and exponential size).

Second, they gave an explicit construction of depth $(log =), which coincides with THR
:=+1

=+1
for

all inputs in which the fraction of ones is bounded away from 1/: by Θ(1/
√

log =).
However, no exact (even non-explicit) construction with sublinear depth or subexponential

size was known. In particular, Valiant’s probabilistic construction does not work for : ≥ 3. In

this paper, we improve depth $(=) to depth $(log
2 =) and size exp ($(=)) to size =$(1) for this

problem.

Theorem 1.3. For any constant : ≥ 3 there exists a polynomial-time computable &:-circuit of depth
$(log

2 =) for THR
:=+1

=+1
(that is, this circuit does not use constants and consists only of THR

:+1

2
-gates).

1.2 Applications to Multiparty Secure Computations

The conjecture stated in [2] was motivated by applications to Secure Multiparty Computations.

The paper [2] establishes an approach to construct efficient multiparty protocols based on

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 3

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

protocols for a small number of players. More specifically, in their framework one starts with a

protocol for a small number of players and a formula � computing a certain boolean function.

Then one combines a protocol for a small number of players with itself recursively, where the

recursion mimics the formula �.

It is shown in [2] that from our result it follows that for any = there is an explicit polynomial

size protocol for = players secure against a passive adversary that controls any C < =
2
players. It

is also implicit in [2] that from Theorem 1.3 for : = 3 it follows that for any = there is a protocol

of size 2
$(log

2 =)
for = players secure against an active adversary that controls any C < =

3
players.

An improvement of the depth of the formula in Theorem 1.3 to $(log =) would result in a

polynomial size protocol [2].

1.3 Multiparty Karchmer–Wigderson games

We now introduce our main conceptual contribution – multiparty Karchmer–Wigderson games.

Let us start with an example. Consider the ordinary monotone Karchmer–Wigderson game

for MAJ
2=+1

. In this game, Alice receives a string G ∈ MAJ
−1

2=+1
(0) and Bob receives a string

H ∈ MAJ
−1

2=+1
(1). In other words, the number of ones in G is at most = and the number of ones in

H is at least = + 1. The goal of Alice and Bob is to find some coordinate 8 such that G8 = 0 and

H8 = 1. Next, imagine that Bob flips each of his input bits. After that, each party has a vector

with at most = ones. Now Alice and Bob have to find a coordinate in which both vectors are 0.

There is a natural generalization of this problem to the multiparty setting. Assume that

there are : parties, and each receives a Boolean vector of length := + 1 with at most = ones. Let

the goal of parties be to find a coordinate in which all : input vectors are 0. How many bits of

communication are needed for that?

For : = 2 the answer is $(log =), because there exists a monotone formula of depth $(log =)
for MAJ

2=+1
, and hence the monotone Karchmer–Wigderson game for MAJ

2=+1
can be solved in

$(log =) bits of communication. For : ≥ 3 we are only aware of a simple $(log
2 =)-bit solution

based on the binary search.

Note that in this problem, each party receives a vector on which THR
:=+1

=+1
equals 0. The goal

is to find a common zero. We can consider a similar problem for any function 5 satisfying a

so-called &:-property: any : vectors from 5 −1(0) have a common zero. In the next definition we

define the &:-property formally and also introduce the related ':-property.

Definition 1.4. Let &: be the set of all Boolean functions 5 satisfying the following property:

for all G1 , G2 , . . . , G: ∈ 5 −1(0) there is a coordinate 8 such that G1

8
= G2

8
= . . . = G:

8
= 0.

Further, let ': be the set of all Boolean functions 5 satisfying the following property: for all

G1 , G2 , . . . , G: ∈ 5 −1(0) there is a coordinate 8 such that G1

8
= G2

8
= . . . = G:

8
.

For 5 ∈ &: let the &:-communication game for 5 be the following communication problem.

There are : parties, the 9th party receives a Boolean vector G 9 ∈ 5 −1(0). The goal of parties is to
find any coordinate 8 such that G1

8
= G2

8
= . . . = G:

8
= 0.

Similarly, we can define ':-communication games for functions from ': . In the ':-communi-

cation games, the objective of parties is slightly different: their goal is to find any coordinate 8

and a bit 1 such that G1

8
= G2

8
= . . . = G:

8
= 1.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 4

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

Note that '2 contains all self-dual functions – that is, functions that take opposite values in
the opposite vertices of a Boolean cube. Similarly, monotone self-dual functions belong to &2. It

is easy to see that '2-communication games are equivalent to Karchmer–Wigderson games for

self-dual functions (one party should flip all the input bits). Moreover,&2-communication games

are equivalent to monotone Karchmer–Widgerson games for monotone self-dual functions.

In this paper, we consider ':-communication games as a multiparty generalization of

Karchmer–Wigderson games. In turn, &:-communication games are considered as a generaliza-

tion of monotone Karchmer–Wigderson games. To justify this choice, one should relate them to

some type of circuits.

1.4 Connection to threshold gates and the main result

Every function from&: can be lower bounded by a&:-circuit (that is, by a circuit that does not use

constants and consists only of THR
:+1

2
-gates). More precisely, let us write � ≤ 5 for a Boolean

circuit � and a Boolean function 5 if for all G ∈ 5 −1(0) we have �(G) = 0. Then the following

proposition holds:

Proposition 1.5 ([2]). The set &: is equal to the set of all Boolean functions 5 for which there exists a
&:-circuit � ≤ 5 .

There is a similar characterization of the set ': via so-called ':-circuits. These are circuits
that does not use constants and consist of THR

:+1

2
-gates and negations that can only be applied

to input variables.

Proposition 1.6. The set ': is equal to the set of all Boolean functions 5 for which there exists an
':-circuit � ≤ 5 .

The proof from [2] of Proposition 1.5 with obvious modifications also works for Proposi-

tion 1.6.

Given 5 ∈ &: , what is the minimal depth of a &:-circuit � ≤ 5 ? We show that this quantity

is equal (up to a constant factor) to the communication complexity of the &:-communication

game for 5 .

Theorem 1.7. Let : ≥ 2 be any constant. Then for any 5 ∈ &: the following two quantities are equal up
to a constant factor:

• the communication complexity of the &:-communication game for 5 ;

• the minimal 3 for which there exists a depth-3 &:-circuit � ≤ 5 .

Similar result can be obtained for ':-communication games.

Theorem 1.8. Let : ≥ 2 be any constant. Then for any 5 ∈ ': the following two quantities are equal up
to a constant factor:

• the communication complexity of the ':-communication game for 5 ;

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 5

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

• the minimal 3 for which there exists a depth-3 ':-circuit � ≤ 5 .

The proof of each theorem is divided into two parts:

(a) transformation of a depth-3 &:-circuit (and ':-circuit) � ≤ 5 into an $(3)-bit protocol
computing the &:-communication game (':-communication game, resp.) for 5 ;

(b) transformation of a 3-bit protocol computing the &:-communication game (or ':-

communication game) for 5 into a &:-circuit � ≤ 5 (an ':-circuit � ≤ 5 , resp.) of

depth $(3).

The first part is simple and the main challenge is the second part. In Section 6 we

also formulate refined versions of Theorems 1.7 and 1.8. We refine these theorems in the

following two directions. First, we take into account circuit size and for this we consider

dag-like communication protocols. Second, we show that transformations (a-b) can be done in

polynomial time (under some mild assumptions).

We derive our upper bounds on the depth of MAJ
2=+1

and THR
:=+1

=+1
(Theorems 1.1 and 1.3)

fromTheorem1.7. Wefirst solve the corresponding&:-communicationgameswith small number

of bits of communication. Namely, for the case of MAJ
2=+1

we use the AKS sorting network to

solve the corresponding &2-communication game with $(log =) bits of communication. For

the case of THR
:=+1

=+1
with : ≥ 3 we solve the corresponding &:-communication game by a

simple binary search protocol with $(log
2 =) bits of communication. This is where we get depth

$(log =) for Theorem 1.1 and depth $(log
2 =) for Theorem 1.3. Again, some special measures

should be taken to make the resulting circuits polynomial-time computable and to control their

size3.

1.5 Our techniques: hypotheses games

As we already mentioned, the hard part of our main result is to transform a protocol into a

circuit.

For this, we develop a new language to describe threshold circuits. For every 5 in &: and in

': we introduce the corresponding &:-hypotheses game and ':-hypotheses game, resp., for 5 .

We show that strategies in these games are equivalent to &:-circuits and ':-circuits. It turns

out that strategies are more convenient than circuits to simulate protocols, since strategies and

protocols operate in the same top-bottom manner.

Once we establish the equivalence of circuits and hypotheses games, it remains for us to

transform a communication protocol into a strategy in a hypotheses game. This is an elaborate

construction presented in Propositions 5.3 and 5.8.

Here is how we define these games. Fix 5 : {0, 1}= → {0, 1}. There are two players, Nature

and Learner. Before the game starts, Nature privately chooses I ∈ 5 −1(0) which then cannot be

changed. The goal of Learner is to find some 8 ∈ [=] such that I8 = 0. The game proceeds in

3We should only care about the size in case of Theorem 1.3, because depth $(log =) immediately gives polynomial

size.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 6

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

rounds. At each round, Learner specifies : + 1 familiesℋ0 ,ℋ1 , . . . ,ℋ: ⊆ 5 −1(0) to Nature. We

understand this as if Learner makes the following : + 1 hypotheses about I:

“I ∈ ℋ0”,

“I ∈ ℋ1”,

...

“I ∈ ℋ:”.

Learner loses immediately if less than : hypotheses are true, i. e., if the number of 9 ∈
{0, 1, . . . , :} satisfying I ∈ ℋ9 is less than :. Otherwise, Nature points out to some hypothesis

which is true. In other words, Nature specifies to Learner some 9 ∈ {0, 1, . . . , :} such that I ∈ ℋ9 .

The game then proceeds in the same manner for some finite number of rounds. At the end,

Learner outputs an integer 8 ∈ [=]. We say that Learner wins if I8 = 0.

It is not hard to show that Learner has a winning strategy in the &:-hypotheses game for

5 if and only if 5 ∈ &: . It is instructive to give a proof of the “if” part of this claim: if 5 ∈ &: ,

then Learner has a winning strategy in the &:-hypotheses game for 5 . We will denote byZ the

set of all I’s that are compatible with Nature’s answers so far. At the beginning,Z = 5 −1(0). If
|Z| ≥ : + 1, Learner takes any distinct I1 , I2 , . . . , I:+1 ∈ Z and makes the following hypotheses:

“I ≠ I1

”,

“I ≠ I2

”,

...

“I ≠ I:+1

”.

At least : hypotheses are true, and any Nature’s response strictly reduces the size ofZ. When

the size ofZ becomes equal to :, Learner is ready to give an answer due to the &:-property of 5 .

This strategy requires exponential in = number of rounds. This can be easily improved to

$(=) rounds. Indeed, instead of choosing : + 1 distinct elements ofZ splitZ into : + 1 disjoint

almost equal parts. Then let the 8th hypotheses be “I is not in the 8th part”. Any Nature’s

response reduces the size ofZ by a constant factor, until the size ofZ is :.

For 5 ∈ &: we can now ask what is the minimal number of rounds in a Learner’s winning

strategy. The following proposition gives an exact answer:

Proposition 1.9. For any 5 ∈ &: the following holds. Learner has a 3-round winning strategy in the
&:-hypotheses game for 5 if and only if there exists a depth-3 &:-circuit � ≤ 5 .

Proposition 1.9 is the core result for our applications. For instance, we prove Theorem 1.1 by

giving an explicit $(log =)-round winning strategy of Learner in the &2-hypotheses game for

MAJ
2=+1

. Let us now sketch our construction of this strategy argument (a complete proof can

be found in Section 4).

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 7

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

Assume that the Nature’s input vector is I ∈ MAJ
−1

2=+1
(0). We start by finding two integers

8 , 9 ∈ [2= + 1] such that either I8 = 0 or I 9 = 0. This can be achieved in $(log =) rounds. Namely,

we maintain a set (⊆ [2= + 1] with a property that I equals 0 on some coordinate from (.

Initially, (= [2= + 1]. Until the size of (is 2, we split (into 3 almost equal parts (1 , (2 , (3. We

then make the following 3 hypotheses: “I is 0 on some coordinate from (1 ∪ (2”, “I is 0 on some

coordinate from (1 ∪ (3”, “I is 0 on some coordinate from (2 ∪ (3”. At least 2 hypotheses are

true, and any Nature’s response decreases the size of (by a factor of 3/2.
Consider a moment when the size of (became equal to 2, and assume that (= {8 , 9}.

Learner knows that either I8 = 0 or I 9 = 0. It is not hard, at the cost of one more round, to

exclude an option that I8 = I 9 = 0. So we may assume from now on, that either I8 = 0, I 9 = 1 or

I8 = 1, I 9 = 0. At the final stage of our construction, we take any polynomial-time computable

monotone formula � of depth $(log =) for MAJ
2=+1

(for instance, one that can be obtained from

the AKS sorting network). We start to descend from the output gate of � to one of �’s inputs.

Throughout this process, we maintain the following invariant: if , is the current gate, then

either ,(I) = 0∧ I8 = 0 or ,(¬I) = 1∧ I 9 = 0 (here ¬ denotes the bitwise negation). Now, assume

w.l.o.g. that , is an ∧-gate, and let , = ,1 ∧ ,2. Note that among the following 3 statements:

“,1(I) = 0 ∧ I8 = 0 ∧ I 9 = 1”,

“,1(I) = 1 ∧ ,2(I) = 0 ∧ I8 = 0 ∧ I 9 = 1”,

“,1(¬I) = ,2(¬I) = 1 ∧ I8 = 1 ∧ I 9 = 0”,

one is true and two are false. We make 3 hypothesis, each calling one of these 3 statements false.

Nature responses by indicating a false statement. If it indicates the third statement, then we

already know that I8 = 0. Otherwise, we can either descend to ,1 or to ,2. Overall, the last stage

of our construction costs at most depth(�) = $(log =) rounds. If we reach an input to �, we

output the index of the corresponding variable.

In ':-hypotheses games, Nature and Learner play in the same way except that now Learner’s

objective is to find some pair (8 , 1) ∈ [=] × {0, 1} such that I8 = 1. The following analog of

Proposition 1.9 holds:

Proposition 1.10. For any 5 ∈ ': the following holds. Learner has a 3-round winning strategy in the
':-hypotheses game for 5 if and only if there exists a depth-3 ':-circuit � ≤ 5 .

1.6 Organization of the paper

In Section 2 we give Preliminaries. In Section 3 we formally define &:-hypotheses games

and ':-hypotheses games, and show their equivalence to &:-circuits and ':-circuits, resp. In

Section 4 we establish our results for the Majority function—Theorems 1.1 and 1.2. Then in

Section 5 we obtain Theorems 1.7 and 1.8—that is, we show that &:-communication games are

equivalent to &:-circuits and &:-hypotheses games, and analogously for ':-communication

games.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 8

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

&:-circuits &:-hypotheses games &:-communication games

Proposition 3.1

Proposition 5.1

Proposition 5.3

':-circuits ':-hypotheses games ':-communication games

Proposition 3.2

Proposition 5.2

Proposition 5.8

Figure 1: Our equivalence results. An arrow from, say, “&:-hypotheses games” to “&:-

communications games” references a transformation of strategies in &:-hypotheses games into

protocols for &:-communication games.

More detailed references concerning these equivalences can be found on Figure 1.6.

In Section 5 we also establish a weak version of Theorem 1.3. Namely, we show that there

exists a &:-circuit of depth $(log
2 =) for THR

:=+1

=+1
. Unfortunately, results of Section 5 are not

sufficient to make this circuit polynomial-time computable.

To overcome this, in Section 6 we refine Theorems 1.7 and 1.8 in order to take into account

the circuit size and polynomial-time computability (see Theorems 6.1 and 6.5 below). Then in

Section 7 we derive Theorem 1.3 from results of Section 6. Additionally, in Section 7 we provide

another proof for Theorem 1.1, via results of Section 6. We deduce from our argument a direct

elementary proof of Theorem 1.1 in Section 8. Finally, in Section 9 we formulate some open

problems.

2 Preliminaries

Let [=] denote the set {1, 2, . . . , =} for = ∈ ℕ. For a set, we denote the set of all subsets of,

by 2
,
. For two sets � and � by �� we mean the set of all (total) functions from � to �.

We usually use subscripts to denote coordinates of vectors. In turn, we usually use

superscripts to numerate vectors.

We use a standard terminology for Boolean functions, formulas and circuits [8]. By MAJ= we

denote the majority function on = inputs. By THR
<
:
we denote the function THR

<
:

: {0, 1}< →
{0, 1}: which outputs 1 if and only if the number of 1’s in the input is at least :.

We denote the size of a circuit � by size(�) and the depth by depth(�). By De Morgan

formulas/circuits we mean formulas/circuits consisting of ∧-gates and ∨-gates of fan-in 2 and

also negations that can only be applied to input variables. By monotone formulas/circuits we

mean formulas/circuits consisting of ∧-gates and ∨-gates of fan-in 2.

We also consider the following classes of circuits/formulas. By &:-circuits and &:-formulas

we mean circuits and formulas, resp., that consist of THR
:+1

2
gates. We also call &2-circuits and

&2-formulas MAJ
3
-circuits and MAJ

3
-formulas. Similarly, by ':-circuits and ':-formulas we

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 9

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

mean circuits and formulas, resp., that consist of THR
:+1

2
gates and also negations that can only

be applied to input variables. We stress that it is not allowed to use constants in &:-circuits and

':-circuits. For all classes of circuits and formulas considered in this paper, we assume that

negations do not contribute to the depth.

We use the notion of deterministic communication protocols in themultiparty number-in-hand
model. Additionally, to capture the circuit size in our results, we consider not only standard

tree-like protocols, but also dag-like protocols. This notion was considered by Sokolov in [14]. We

use a slightly different variant of this notion. We provide all necessary definitions in the next

subsection.

2.1 Dags and dag-like communication protocols

We consider directed acyclic graphs (dags) with possibly more than one directed edge from one

node to another. A terminal node of a dag � is a node with no out-going edges. Given a dag �,

let

• +(�) denote the set of nodes of �;

•)(�) denote the set of terminal nodes of �.

For E ∈ +(�) let $DC�(E) be the set of all edges of � that start at E. A dag � is called C-ary if

for every non-terminal node E of � we have |$DC�(E)| = C. An ordered C-ary dag is a C-ary

dag � equipped with a mapping from the set of edges of � to {0, 1, . . . , C − 1}. This mapping,

restricted to $DC�(E), must be injective for every E ∈ +(�) \)(�). The value of this mapping on

an edge 4 will be called the label of 4. In other words, any C edges that start at the same node

must have different labels.

By a path in � we mean a sequence of edges 〈41 , 42 , . . . , 4<〉 such that for every 9 ∈ [< − 1]
edge 4 9 ends in the same node in which 4 9+1 starts. Note that there may be two distinct paths

visiting the same nodes in the same order, because we allow parallel edges.

We say that a node F is a descendant of a node E if there is a path from E to F. We call F a

successor of E if there is an edge from E to F. A node B is called the starting node if every other

node is a descendant of B. Note that any dag has at most one starting node (otherwise there will

be a cycle in this dag).

If a dag � has the starting node B, then by the depth of E ∈ +(�) we mean the maximal

length of a path from B to E. The depth of � then is the maximal depth of its nodes.

Let X1 ,X2 , . . . ,X: ,Y be finite sets.

Definition 2.1. A :-party dag-like communication protocol � with inputs from X1 ×X2 × . . .X:
and with outputs fromY is a tuple 〈�, %1 , %2 , . . . , %: ,)1 ,)2 , . . . ,): , ;〉, where

• � is an ordered 2-ary dag with the starting node B;

• %1 , %2 , . . . , %: is a partition of +(�) \)(�) into : disjoint subsets;

•)8 is a function from %8 × X8 to {0, 1};

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 10

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

• ; is a function from)(�) toY.

The depth of � (denoted by depth(�)) is the depth of �. The size of � (denoted by size(�)) is
|+(�)|.

The underlying mechanics of the protocol is as follows. Parties descend from B to one

of the terminals of �. If the current node E is not a terminal and E ∈ %8 , then at E the 8th

party communicates a bit to all the other parties. Namely, the 8th party communicates the bit

1 =)8(E, G), where G ∈ X8 is the input of the 8th party. Among the two edges starting at E,

parties take one labeled by 1 and descend to one of the successors of E along this edge. Finally,

when parties reach a terminal C, they output ;(C).
We say that G ∈ X8 is 8-compatible with an edge 4 from E to F if one of the following two

conditions hold:

• E ∉ %8 ;

• E ∈ %8 and 4 is labeled by)8(E, G).

We say that G ∈ X8 is 8-compatible with a path ? = 〈41 , 42 , . . . , 4<〉 of � if for every 9 ∈ [<] it
holds that G is 8-compatible with 4 9 . Intuitively, this means that the 8th party, having input G,

communicates along ? (from those nodes of ? where this party is the one to communicate).

Finally, we say that G ∈ X8 is 8-compatible with a node E ∈ +(�) if there is a path ? from B to E

such that G is 8-compatible with ?.

We say that an input (G1 , G2 , . . . , G:) ∈ X1 × X2 × . . .X: visits a node E ∈ +(�) if there is a
path ? from B to E such that for every 8 ∈ [:] it holds that G 8 is 8-compatible with ?. Note that

there is a unique C ∈)(�) such that (G1 , G2 , . . . , G:) visits C.
To formulate an effective version of Theorem 1.7 and Theorem 1.8, we need the following

definition.

Definition 2.2. The light form of a :-party dag-like communication protocol

� = 〈�, %1 , %2 , . . . , %: ,)1 ,)2 , . . . ,): , ;〉

is the tuple 〈�, %1 , %2 , . . . , %: , ;〉.

In other words, to obtain the light form of � we just forget about)1 ,)2 , . . . ,): . So the

light form only contains the underlying ordered dag of �, the partition of non-terminal nodes

between parties and the labels of terminals. On the other hand, in the light form there is no

information at all how parties communicate at non-terminal nodes.

A protocol � computes a relation (⊆ X1 ×X2 × . . . ×X: ×Y if the following holds. For every

(G1 , G2 , . . . , G:) ∈ X1 ×X2 × . . . ×X: there exist H ∈ Y and C ∈)(�) such that (G1 , . . . , G:) visits C,
;(C) = H and (G1 , G2 , . . . , G: , H) ∈ (.

Using the language of relations, we can formally define &:-communication games and

':-communication games. Given 5 : {0, 1}= → {0, 1}, 5 ∈ &: , we define the &:-communication

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 11

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

game for 5 as the following relation:

(⊆ 5 −1(0) × . . . × 5 −1(0)︸ ︷︷ ︸
:

×[=],

(=
{
(G1 , . . . , G: , 9) | G1

9 = . . . = G
:
9 = 0

}
.

Similarly, given 5 : {0, 1}= → {0, 1}, 5 ∈ ': , we define the ':-communication game for 5 as the

following relation:

(⊆ 5 −1(0) × . . . × 5 −1(0)︸ ︷︷ ︸
:

×([=] × {0, 1}),

(=
{
(G1 , . . . , G: , (9 , 1)) | G1

9 = . . . = G
:
9 = 1

}
.

It is easy to see that a dag-like protocol for (can be transformed into a tree-like protocol

(i. e., into a protocol whose underlying dag is a tree) of the same depth, but this transformation

can drastically increase the size.

3 Formal treatment of &:-hypotheses and ':-hypotheses games

Fix 5 ∈ &: , 5 : {0, 1}= → {0, 1}. Here we define Learner’s strategies in the &:-hypotheses game

for 5 formally. We consider not only tree-like strategies, but also dag-like. To specify a Learner’s

strategy (in the &:-hypotheses game for 5 , we have to specify:

• An ordered (: + 1)-ary dag � with the starting node B;

• a subset ℋ9(?) ⊆ {0, 1}= for every 9 ∈ {0, 1, . . . , :} and for every path ? in � from B to

some node in +(�) \)(�);

• a number 8C ∈ [=] for every terminal C of �.

The underlying mechanics of the game is as follows. Let the Nature’s vector be I ∈ 5 −1(0).
Learner and Nature descend from B to one of the terminals of �. More precisely, a position in

the game is determined by a path ?, starting at B. If the endpoint of ? is not a terminal, Learner

specifies sets ℋ0(?),ℋ1(?), . . . ,ℋ:(?) as its hypotheses. If less than : of these sets contain I,

Nature wins. Otherwise, Nature specifies some 9 ∈ {0, 1, . . . , :} such that I ∈ ℋ9(?). Among

the : + 1 edges that start at the endpoint of ?, the players take one which is labeled by 9. After

that, they extend ? by this edge. At some point, parties reach a terminal C (i. e., the endpoint of

? becomes equal C). Then the game ends and Learner outputs 8C .

We stress that Learner’s output depends only on C but not on a path to C (unlike Learner’s

hypotheses). This property will be crucial in establishing a connection between &:-hypotheses

games and &:-circuits.

We now proceed to a formal definition of what it means that (is winning for Learner.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 12

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

We say that I ∈ 5 −1(0) is compatiblewith a path ? = 〈41 , . . . , 4<〉, starting at B, if the following

holds. If ? is of length 0, then every I ∈ 5 −1(0) is compatible with ?. Otherwise, for every

8 ∈ {1, . . . , <} it should hold that I ∈ ℋ9(〈41 , . . . , 48−1〉), where 9 is the label of 48 . In other words,

the label of 48 should be a possible Nature’s response to Learner’s hypotheses in the position

〈41 , . . . , 48−1〉. Informally, this means that Nature, having input I, can reach a position in the

game which corresponds to a path ?.

We say that a strategy (is winning for Learner in the &:-hypotheses game for 5 if for every

path ?, starting at B, and for every I ∈ 5 −1(0), compatible with ?, the following holds:

• if the endpoint of ? is not a terminal, then the number of 9 ∈ {0, 1, . . . , :} such that

I ∈ ℋ9(?) is at least :;

• if the endpoint of ? is C ∈)(�), then I8C = 0.

We will formulate a stronger version of Proposition 1.9. For that we need a notion of the light
form of a strategy (. Namely, the light form of (is its ordered dag � equipped with a mapping

which to every C ∈)(�) assigns 8C . In other words, the light form contains a “skeleton” of (and

Learner’s outputs in terminals (and no information about Learner’s hypotheses).

We can identify the light form of any strategy (with a&:-circuit. Namely, put a THR
:+1

2
-gate

to every non-terminal node E of �, and for every C ∈)(�) put a variable G8C into C. Set B, the

starting node of �, to be the output gate.

Proposition 3.1. For all Boolean functions 5 ∈ &: the following holds:

(a) if (is a Learner’s winning strategy in the &:-hypotheses game for 5 , then its light form, considered
as a &:-circuit �, satisfies � ≤ 5 .

(b) Assume that � ≤ 5 is a &:-circuit. Then there exists a Learner’s winning strategy (in the
&:-hypotheses game for 5 such that the light form of (coincides with �.

In fact, in the paper we only use the item (a) of this proposition. But for completeness, we

also provide a proof of the item (b).

Proof of the item (a) of Proposition 3.1. For a node E ∈ +(�) let 5E be the function computed by

the circuit � at the gate corresponding to E. We shall prove the following statement. For any

path ? starting at B and for any I which is compatible with ? it holds that 5E(I) = 0, where

E is the endpoint of ?. To see why this implies � ≤ 5 , take any I ∈ 5 −1(0) and note that I is

compatible with the path which starts and ends at B. The endpoint of this path is B and hence

0 = 5B(I) = �(I).
We will prove the above statement by backward induction on the length of ?. The longest

path ? ends in some C ∈)(�). By definition, 5C = G8C . On the other hand, since (is winning,

I8C = 0 for any I compatible with ?. In other words, 5C(I) = 0 for any I compatible with ?. The

base is proved.

The induction step is the same if ? ends in some other terminal. Now assume that ? ends in

E ∈ +(�) \)(�). Take any I ∈ 5 −1(0) compatible with ?. Let ? 9 be the extension of ? by the edge

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 13

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

which starts at E and is labeled by 9 ∈ {0, 1, . . . , :}. Next, let E 9 be the endpoint of ? 9 (note that

E0 , E1 , . . . , E: are successors of E). Since (is winning, the number of 9 ∈ {0, 1, . . . , :} such that

I ∈ ℋ9(?) is at least :. Hence the number of 9 ∈ {0, 1, . . . , :} such that I is compatible with ? 9 is

at least :. Finally, by the induction hypothesis this means that the number of 9 ∈ {0, 1, . . . , :}
such that 5E 9 (I) = 0 is at least :. On the other hand:

5E = THR
:+1

2
(5E0

, 5E1
, . . . , 5E:).

Therefore, 5E(I) = 0, as required. �

Proof of the item (b) of Proposition 3.1. The circuit � should be the light form of (. So to define

(, it remains to define hypotheses of Learner in (. Consider any non-input gate , of �. Let

,0 , . . . ,: be gates that are fed to ,, that is, , = THR
:+1

2
(,0 , . . . , ,:). For every path ? from the

output gate to , we define the following hypotheses:

ℋ0(?) = ,−1

0
(0), . . . ,ℋ:(?) = ,−1

:
(0).

Note thatℋ0(?), . . . ,ℋ:(?) depend only on the endpoint of ?.

We have to show that this strategy of Learner is winning in the &:-hypotheses game for 5 .

First, let us observe the following: for any path ? and for any I ∈ 5 −1(0) which is compatible

with ? it holds that ,(I) = 0, where , is the gate at the endpoint of ?. Indeed, if ? is of length 0,

then , is the output gate of �, and hence ,(I) = �(I) ≤ 5 (I). Otherwise, note that the game can

come to a gate , only if previously Nature indicated that ,(I) = 0.

Now, consider any path ? and any I ∈ 5 −1(0) which is compatible with ?. We have to show

two things. First, if ? ends in some non-input gate ,, then the number of 9 ∈ {0, 1, . . . , :} such
that I ∈ ℋ9(?) is at least :. Second, if ? ends in an input variable G8 , then I8 = 0. The second

claim is already established. As for the first claim, note that if I is compatible with ?, then, as

we have proved, ,(I) = THR
:+1

2
(,0 , . . . , ,:)(I) = 0. That is, the number of 9 ∈ {0, 1, . . . , :} such

that , 9(I) = 0 is at least :, as required. �

Similarly, one can define ':-hypotheses games for functions 5 ∈ ': . The only difference this

time is that the goal of Learner is to find an index 8 ∈ [=] and a bit 1 ∈ {0, 1} such that I8 = 1.

Correspondingly, the leaves of Learner’s strategies in ':-hypotheses games will be labeled by

pairs from [=] × {0, 1}. When we turn these strategies into circuits, we turn leaves that are

labeled by (8 , 0) into G8 , and leaves that are labeled by (8 , 1) into ¬G8 .
The same argument as in Proposition 3.1 establishes the following proposition.

Proposition 3.2. For all Boolean functions 5 ∈ ': the following holds:
(a) if (is a Learner’s winning strategy in the ':-hypotheses game for 5 , then its light form, considered

as an ':-circuit �, satisfies � ≤ 5 .

(b) Assume that � ≤ 5 is an ':-circuit. Then there exists a Learner’s winning strategy (in the
':-hypotheses game for 5 such that the light form of (coincides with �.

Remark 3.3. It might be unclear why we prefer to construct strategies instead of constructing

circuits directly, because beside the circuit itself we should also specify Learner’s hypotheses.

The reason is that strategies can be seen as proofs that the circuit we construct is correct.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 14

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

4 Results for Majority

Theorem 4.1 (Restatement of Theorem 1.1). There exists a polynomial-time computableMAJ
3
-formula

of depth $(log =) for MAJ
2=+1

.

Proof. Due to theAKS sorting network [1], there exists an algorithmwhich in =$(1) time produces

a monotone formula � of depth 3 = $(log =) which computes MAJ
2=+1

. Below we will define a

strategy (� in the &2-hypotheses game for MAJ
2=+1

. Strategy (� will be winning for Learner.

Moreover, its depth will be 3 + $(log =). In the end of the proof, we will refer to Proposition 3.1

to show that (� yields a polynomial-time computable MAJ
3
-formula of depth $(log =) for

MAJ
2=+1

.

Strategy (� has two phases. The first phase does not use � at all, only the second phase

does. The objective of the first phase is to find some distinct 8 , 9 ∈ [2= + 1] such that either

I8 = 0 ∧ I 9 = 1 or I8 = 1 ∧ I 9 = 0, where I is the Nature’s vector. This can be done as follows.

Lemma 4.2. One can compute in polynomial time a 3-ary tree) of depth $(log =) with the set E()) of
nodes, and a mapping F : E()) → 2

[2=+1] such that the following holds:

• if A is the root of), then F(A) = [2= + 1] ;

• if E is not a leaf of) and E1 , E2 , E3 are 3 children of E, then every element of F(E) is covered at
least twice by F(E1), F(E2), F(E3) ;

• if ; is a leaf of), then F(A) is of size 2.

Proof. We start with a trivial tree, consisting only of the root, to which we assign [2= + 1]. Then
at each iteration we do the following. We have a 3-ary tree in which nodes are assigned to some

subsets of [2= + 1]. If every leaf is assigned to a set of size 2, we terminate. Otherwise, we pick

any leaf ; of the current tree which is assigned to a subset � ⊆ [2= + 1] of size at least 3. We

split � into 3 disjoint subsets �1 , �2 , �3 of sizes b|�|/3c , b|�|/3c and |�| − 2b|�|/3c. We add 3

children to ; (which become new leaves) and assign �1 ∪ �2 , �1 ∪ �3 , �2 ∪ �3 to them.

The sizes of �1 ∪ �2 , �1 ∪ �3 , �2 ∪ �3 do not exceed |�| − b|�|/3c ≤ |�| − |�|/3 + 2/3 =
2/3 · (|�| + 1) ≤ 2/3 · (|�| + |�|/3) = 8/9 · |�|. Hence, the size of the set assigned to a node of

depth ℎ is at most (8/9)ℎ · (2= + 1). This means that at any moment, the depth of the tree is at

most log
9/8(2= + 1) = $(log =). Therefore, we terminate in 3

$(log =) = =$(1) iterations, because at
each iteration we add 3 new nodes. Each iteration takes polynomial time. �

We use) to find 8 , 9 ∈ [2= + 1] such that either I8 = 0 or I 9 = 0. Namely, we descend from

the root of) to one of its leaves. Learner maintains an invariant that the leftmost 0-coordinate

of I is in F(E), where E is the current node of). Let E1 , E2 , E3 be 3 children of E. Learner, for

every 8 ∈ [3], makes a hypothesis that the leftmost 0-coordinate of I is in F(E8). Due to the

properties of F, at least two hypotheses are true. Nature indicates some E8 for which this is true,

and Learner descends to E8 . When Learner reaches a leaf, it knows a set of size two containing

the leftmost 0-coordinate of I. Let this set be {8 , 9}.
Learner knows that either I8 or I 9 is 0. Thus, (I8 , I 9) ∈ {(0, 0), (0, 1), (1, 0)}. At the cost of one

round, Learner can ask Nature to identify an element of {(0, 0), (0, 1), (1, 0)} which differs from

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 15

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

(I8 , I 9). If the pair (1, 0) is identified, then (I8 , I 9) ∈ {(0, 0), (0, 1)}, and hence I8 = 0, i. e., we can

already output 8. In turn, if the pair (0, 1) is identified, we can output 9. Finally, if the pair (0, 0)
is identified, then the objective of the first phase is fulfilled and we can proceed to the second

phase.

The second phase takes at most 3 rounds. In this phase Learner produces a sequence

,0 , ,1 , . . . , ,3′, 3′ ≤ 3 of gates of � with the following properties. First, the depth of ,8 is 8.
Second, the last gate ,3′ is an input variable (i. e., a leaf of �). Third, each , ∈ {,0 , ,1 , . . . , ,3′}
satisfies: (

,(I) = 0 ∧ (I8 , I 9) = (0, 1)
)
∨

(
,(¬I) = 1 ∧ (I8 , I 9) = (1, 0)

)
. (4.1)

Here ¬I denotes the bitwise negation of I.

At the beginning, Learner sets ,0 = ,out to be the output gate of �. Let us explain why (4.1)

holds for ,out. Nature’s vector is an element of MAJ
−1

2=+1
(0). That is, the number of ones in I is at

most =. In turn, in ¬I there are at least = + 1 ones. Since ,out computes MAJ
2=+1

, we have that

,out(I) = 0 and ,out(¬I) = 1. On the other hand, as guaranteed after the first phase, we have

that (I8 , I 9) = (0, 1) ∨ (I8 , I 9) = (1, 0).
Assume now that the second phase is finished, that is, Learner has produced some ,3′ = G:

satisfying (4.1). Then by (4.1) either ,3′(I) = I: = 0 or ,3′(¬I) = (¬I): = 1. We have I: = 0 in

both cases. Hence, Learner can output :.

It remains to explain how to fulfill the second phase. It is enough to show the following.

Assume that Learner knows a non-input gate ,; of � of depth ; satisfying (4.1). Then in one

round it can either find a gate ,;+1 of depth ; + 1 satisfying (4.1) or give a correct answer to the

game.

The gate ,;+1 will be one of the two gates which are fed to ,; . Assume first that ,; is an
∧-gate and ,; = D ∧ E. From (4.1) we conclude that among the following three statements one is

true and two are false:

D(I) = 0 and (I8 , I 9) = (0, 1), (4.2)

D(I) = 1, E(I) = 0 and (I8 , I 9) = (0, 1), (4.3)

D(¬I) = E(¬I) = 1 and (I8 , I 9) = (1, 0). (4.4)

At the cost of one round Learner can ask Nature to indicate one statement which is false for I.

If Nature says that (4.2) is false for I, then (4.1) holds for ,;+1 = E (because (4.1) follows from

the disjunction of (4.3) and (4.4)). Next, if Nature says that (4.3) is false for I, then, by the same

argument, (4.1) holds for ,;+1 = D. Finally, if Nature says that (4.4) is false for I, then we know

that (I8 , I 9) = (0, 1), i. e., Learner can already output 8.

One can deal in the same way with the case when ,; is an ∨-gate and ,; = D ∨ E. By (4.1)

exactly one of the following three statements is true for I:

D(I) = E(I) = 0 and (I8 , I 9) = (0, 1), (4.5)

D(¬I) = 1 and (I8 , I 9) = (1, 0), (4.6)

D(¬I) = 0, E(¬I) = 1 and (I8 , I 9) = (1, 0). (4.7)

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 16

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

Similarly, Learner asks Nature to indicate one statement which is false for I. If Nature says that

(4.5) is false for I, then (I8 , I 9) = (1, 0), i. e., Learner can output 9. Next, if Nature says that (4.6)

is false for I, then (4.1) holds for ,;+1 = E. Finally, if Nature says that (4.7) is false for I, then (4.1)

holds for ,;+1 = D.

Thus, (� is a winning strategy of depth $(log =) of Learner. Apply Proposition 3.1 to (� . We

obtain a MAJ
3
-formula �′ ≤ MAJ

2=+1
of depth $(log =). In fact, �′ computes MAJ

2=+1
. Indeed,

�′ ≤ MAJ
2=+1

means that �′ outputs 0 on every input with at most = ones. On the other hand,

�′ consists of MAJ
3
gates and hence �′ computes a self-dual function (that is, it outputs opposite

values in opposite vertices of the Boolean cube). Therefore, �′ outputs 1 on every input with at

least = + 1 ones.

It remains to explain how to compute �′ in polynomial time. To do so, by Proposition 3.1 it

is sufficient to compute in polynomial time the light form of (�, i. e., the underlying tree of (�
and the outputs of Learner in the leaves It is easy to see that the light form of (� is arranged as

follows.

First, compute � and compute) from Lemma 4.2. For each leaf ; of) do the following. Let

F(;) = {8 , 9}. Add 3 children to ;. Two of them will be leaves of (� , labeled by 8 and 9. We then

attach a tree of � to the remaining child of ;. Then we add to every non-leaf node of � one more

child so that now the tree of � is 3-ary. Each added child is a leaf of (�. If a child was added

to an ∧-gate, then Learner outputs 8 in this child. In turn, if a child was added to an ∨-gate,
then Learner outputs 9 in it. Finally, there are leaves that were in � initially, each labeled by

some input variable. In these nodes, Learner outputs the index of the corresponding input

variable. �

Theorem 4.3 (Restatement of Theorem 1.2). If there is a monotone formula for MAJ
2=+1

of size B,
then there is a MAJ

3
-formula for MAJ

2=+1
of size $(B · =log

2
(3)) = $(B · =1.58...).

Proof. Take anymonotone formula � forMAJ
2=+1

whose size is B, and consider the corresponding

Learner’s strategy (� defined in the previous proof. Recall that (� has two phases. The goal of

the first phase is to find some 8 , 9 ∈ [2= + 1] such that either I8 = 0 ∧ I 9 = 1 or I8 = 1 ∧ I 9 = 0. To

show the theorem, it is sufficient to accomplish the first phase in log
2
= + $(1) rounds. Indeed,

then the tree of (� is a ternary tree of depth log
2
= + $(1) with trees of the same size as formula

� attached to leaves. Overall, its size is $(3log
2
(=)+$(1) · B) = $(=log

2
(3) · B).

A difference from the previous proof is that this time we do not care about explicitness. In

the explicit construction from the previous proof we fulfil the first phase in log
3/2(=) + $(1)

rounds (in fact, we only bounded it from above by log
9/8(=) + $(1), to avoid technical details).

To improve it, we need the following lemma, which will be proved by the probabilistic method.

Lemma 4.4. There exists a formula � with the following properties:

• formula � is a complete ternary tree of depth dlog
2
(=)e + 10;

• every non-leaf node of � contains a MAJ
3
-gate and every leaf of � contains a conjunction of 2

variables;

• �(G) = 0 for every G ∈ {0, 1}2=+1 with at most = ones.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 17

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

Let us at first explain how to use formula � from Lemma 4.4 to accomplish the first phase in

log
2
= +$(1) rounds. First, as explained in the previous proof, it is sufficient to find two indices

8 , 9 ∈ [2= + 1] such that either I8 = 0 or I 9 = 0. To do so Learner, descends from the output gate

of � to some of its leaves. It maintains an invariant that for its current gate , of � it holds that

,(I) = 0. For the output gate, the invariant is true because by Lemma 4.4 � is 0 on all Nature’s

possible vectors. If we reached a leaf so that , is a conjuction of two variables I8 and I 9 , then the

first phase is fulfilled (by the invariant, I8 ∧ I 9 = 0). Finally, if , is a non-leaf node of �, i. e., a

MAJ
3
-gate, then in one round we can descend to one of the children of ,, without violating the

invariant. Indeed, since ,(I) = 0, the same is true for at least 2 children of ,. For each child ,8 of
, Learner makes a hypothesis that ,8(I) = 0. Any Nature’s response allows us to replace , by

some ,8 .

Proof of Lemma 4.4. Independently for each leaf ; of � choose (8 , 9) ∈ [2= + 1]2 uniformly at

randomandput the conjuction I8∧I 9 into ;. It is enough to demonstrate that for any G ∈ {0, 1}2=+1

with at most = ones it holds that Pr[�(G) = 1] < 2
−2=−1

.

To do so, we use a modification of a standard Valiant’s argument. For any fixed G with at

most = ones, let ? be the probability that a leaf ; of � equals 1 on G. This probability is the same

for all leaves and it does not exceed 1/4. Now, observe that:

Pr[�(G) = 1] = 5 (5 (5 (. . . 5︸ ︷︷ ︸
dlog

2
(=)e + 10

(?))) . . .),

where 5 (C) = C3 + 3C2(1 − C) = 3C2 − 2C3. Since, 3 5 (C) ≤ (3C)2, we have:

3 Pr[�(G) = 1] ≤ (3?)2dlog
2
(=)e+10 ≤ (3/4)1000= < (1/2)−2=−1.

�

�

5 Proof of the Main Theorem

Theorem 1.7 follows from Proposition 5.1 (Subsection 5.1) and Proposition 5.3 (Subsection 5.2).

In turn, Theorem 1.8 follows from Proposition 5.2 (Subsection 5.1) and Proposition 5.8 (Subsec-

tion 5.2).

5.1 From circuits to protocols

Proposition 5.1. For any constant : ≥ 2 the following holds. Assume that 5 ∈ &: and � ≤ 5 is
a &:-circuit. Then there is a protocol �, computing the &:-communication game for 5 , such that
depth(�) = $(depth(�)).

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 18

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

Proof. Let the inputs of parties be I1 , . . . , I: ∈ 5 −1(0). Parties descend from the output gate

of � to one of the inputs. They maintain an invariant that for the current gate , of � it holds

that ,(I1) = ,(I2) = . . . = ,(I:) = 0. If , is not yet an input, then , = THR
:+1

2
(,0 , . . . , ,:)

for some gates ,0 , . . . , ,: . We have for each I 8 that ,(I 8) = THR
:+1

2
(,0(I 8), . . . , ,:(I 8)) = 0.

Hence for each I 8 there is at most one gate out of ,0 , . . . , ,: satisfying , 9(I 8) = 1. This means

that in $(1) bits of communication parties can agree on the index 9 ∈ {0, 1, . . . , :} satisfying
, 9(I1) = , 9(I2) = . . . = , 9(I:) = 0.

Thus, in $(depth(�)) bits of communication they reach some input of �. If this input

contains a variable G; , then by the invariant we have I1

;
= I2

;
= . . . = I:

;
= 0, as required. �

The same argument can be used to show the following proposition.

Proposition 5.2. For any constant : ≥ 2 the following holds. Assume that 5 ∈ ': and � ≤ 5 is
an ':-circuit. Then there is a protocol �, computing the ':-communication game for 5 , such that
depth(�) = $(depth(�)).

5.2 From protocols to circuits

Proposition 5.3. For every constant : ≥ 2 the following holds. Let 5 ∈ &: . Assume that � is a
communication protocol computing the &:-communication game for 5 . Then there is a &:-circuit � ≤ 5

such that depth(�) = $(depth(�)).
Proof. Set 3 = depth(�). By Proposition 3.1, it is enough to give an $(3)-round winning strategy

of Learner in the &:-hypotheses game for 5 .

We will use the following terminology. First, consider any subset Z ⊆ 5 −1(0), any set

� and any function , : Z → �. Then the ,-value of a tuple (I1 , . . . , I:) ∈ Z:
is a vector

(,(I1), . . . , ,(I:)) ∈ �: .
Let + be the set of all nodes of the protocol � and let) be the set of all terminals of the

protocol �. Consider any set* ⊆ + and any setZ ⊆ 5 −1(0). The following definition is crucial

for our argument.

Definition 5.4. We say that * is complete forZ if there exist a set � of size : and a function

, : Z → � with the following property: for every vector 2̄ ∈ �: there exists a node D ∈ * such

that all tuples from Z:
whose ,-value is 2̄ visit D in the protocol �. We also say that such ,

establishes completeness of* forZ.

In other words,* is complete forZ if there is a way of partitioningZ into at most : parts

such that the following holds. Assume that somebody takes a tuple (I1 , . . . , I:) ∈ Z:
and for

every 8 ∈ [:] tells us the part ofZ to which I 8 belongs. Then we can determine a node D ∈ *
such that the tuple (I1 , . . . , I:) visits D in the protocol �.

We now describe the Learner’s strategy. It proceeds in 3 iterations, each iteration takes $(1)
rounds of the &:-hypotheses game. Now, we say that a set of nodes* ⊆ + is ℎ-low if all nodes

of* that are not terminals are of depth at least ℎ. Learner maintains the following invariant.

Invariant 5.5. After ℎ iterations, there exists an ℎ-low set of nodes* which is complete for the

setZℎ of all I ∈ 5 −1(0) that are compatible with Nature’s responses after ℎ iterations.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 19

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

Let us first explain why this invariant holds in the beginning. We need to establish a 0-low

set* which is complete for 5 −1(0). We can take* = {B}, where B is the starting node of �. This
is because every tuple visits B in the protocol �.

Next, let us explain that if Invariant 5.5 holds after 3 iterations, then Learner is able to

produce a correct answer to the &:-hypotheses game for 5 . Indeed, there exists a 3-low set

of nodes * which is complete forZ3. Note that * consists only of terminals. Therefore, it is

sufficient to establish the following lemma.

Lemma 5.6. Assume that* ⊆) is complete forZ ⊆ 5 −1(0). Then there exists 8 ∈ [=] such that I8 = 0

for every I ∈ Z.

Proof. IfZ is empty, then there is nothing to prove. Otherwise, take , : Z → �, |� | = : which

establishes completeness of * for Z. Consider any vector 2̄ = (21 , . . . , 2:) ∈ �: such that

{28 | 8 ∈ [:]} = ,(Z). There exists a node D ∈ * such that any tuple fromZ:
whose ,-value is 2̄

visits D. Note that D is a terminal of �. Let 8 ∈ [=] be the output of � in D. We show that for

any I ∈ Z it holds that I8 = 0. Indeed, note that there exists a tuple Ī ∈ Z:
whose ,-value is

2̄ and which includes I. This tuple visits D. Since � computes the &:-communication game

for 5 , every element of the tuple Ī should have 0 at the 8th coordinate. In particular, this holds

for I. �

Finally, we describe how to maintain Invariant 5.5. Assume that it holds after ℎ iterations.

Let us show how to perform the next iteration to maintain the invariant. We need a notion of a

communication profile for that.
The communication profile of I ∈ 5 −1(0)with respect to a set of nodes* ⊆ + is a function

?I : * → {0, 1}, defined as follows. Take any E ∈ * . If E is a terminal, set ?I(E) = 0. Otherwise,

let 8 ∈ [:] be the index of the party communicating at E. Set ?I(E) to be the bit transmitted by

the 8th party at E on input I. In the words, the communication profile of I w.r.t.* stores how

all the parties communicate at nodes of* on input I.

We also define the communication profile of a tuple (I1 , . . . , I:) ∈ (5 −1(0)): as (?I1 , . . . , ?I:).

Lemma 5.7. Let (I1 , . . . , I:), (H1 , . . . , H:) ∈ (5 −1(0)): be two inputs visiting the same node E ∈ + \).
Assume that their communication profiles with respect to {E} coincide. Then these two inputs visit the
same successor of E.

Proof. Let their common communication profilewith respect to {E} be (?1 , . . . , ?:). Next, assume

that 8 is the index of the party communicating at E. Then where these inputs descend from E is

determined by ?8 . �

Here is what Learner does during the (ℎ + 1)st iteration. It takes any ℎ-low * which is

complete forZℎ . Then it takes any , : Zℎ → �, |� | = : which establishes completeness of* for

Zℎ . Note that w.l.o.g. * is of size at most :: . This is because for any vector 2̄ ∈ �: we need

exactly one node in* for 2̄ to establish completeness.

Learner now devises a new function ,′ whose domain is the setZℎ . The value of ,′(I) is a
pair (?I , ,(I)), where ?I is a communication profile of I with respect to * . There are at most

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 20

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

2
|* | ≤ 2

::
different communication profiles with respect to* . Hence, the image of ,′ is of size

at most 2
:: · : = $(1).

The goal of the (ℎ + 1)st iteration is to narrow down the image of ,′ to a set of size :.

Learner does this as follows. While there exist : + 1 different possible values of ,′, Learner
asks Nature to reject one of them. More specifically, for each of these : + 1 values, Learner

make a hypothesis that ,′(I) differs from this value. As the size of the image of ,′ in the

beginning is $(1), this process takes $(1) rounds of the &:-hypotheses game. In the end of the

(ℎ + 1)st iteration, we are left with : possible values of ,′. Denote them by (?1 , 21), . . . (?: , 2:).
In other words, we know that ,′(/ℎ+1) ⊆ {(?1 , 21), . . . , (?: , 2:)} (recall that /ℎ+1 is the set of

I ∈ 5 −1(0) that are compatible with the Nature’s responses after ℎ + 1 iterations). We show

that ,′ : Zℎ+1 → {(?1 , 21), . . . , (?: , 2:)} = �′ establishes completeness of some (ℎ + 1)-low set of

nodes*′ forZℎ+1. This will establish Invariant 5.5 after the (ℎ + 1)st iteration.
Take any vector 2̄ ∈ (�′): . It is enough to show that all the inputs from (Zℎ+1): whose

,′-value is 2̄ visit the same node E′ which is either a terminal or of depth at least ℎ + 1. Then we

just set*′ to be the union of all such E′ over all 2̄ ∈ (�′): .
All tuples from (Zℎ+1): with the same ,′-value visit the same node E ∈ * . This is because

,′-value of a tuple determines its ,-value, and hence we can use Invariant 5.5 forZℎ here. If E is

a terminal, there is nothing left to prove. Otherwise, note that ,′-value of a tuple also determines

its communication profile with respect to* , and hence with respect to {E} ⊆ * . Therefore, by

Lemma 5.7, all tuples with this ,′-value visit the same successor of E. �

With straightforward modifications, one can obtain a proof of the following:

Proposition 5.8. For every constant : ≥ 2 the following holds. Let 5 ∈ ': . Assume that � is a
communication protocol computing the ':-communication game for 5 . Then there is an ':-circuit
� ≤ 5 such that depth(�) = $(depth(�)).

Corollary 5.9 (Weak version of Theorem 1.3). For any constant : ≥ 2 there exists a &:-formula of
depth $(log

2 =) for THR
:=+1

=+1
.

Proof. We will show that there exists a protocol � of depth $(log
2 =) computing the &:-

communication game for THR
:=+1

=+1
. By Proposition 5.3 this means that there is a &:-formula

� ≤ THR
:=+1

=+1
of depth $(log

2 =).
It is easy to see that � actually coincides with THR

:=+1

=+1
. Indeed, assume for contradiction that

�(G) = 0 for some G with at least = + 1 ones. Then it is easy to construct G2 , . . . , G: , each with =

ones, such that G, G2 , . . . , G: have no common 0-coordinate. Since �(G) = �(G2) = . . . = �(G:) = 0,

we conclude that � does not have the &:-property. But � is a &:-formula, so it gives a

contradiction with Proposition 1.5.

Let � be the following protocol. Assume that the inputs to parties are G1 , G2 , . . . , G: ∈
{0, 1}:=+1

. Without loss of generality, we may assume that each GA has exactly = ones. For

G ∈ {0, 1}:=+1
define supp(G) = {8 ∈ [:= + 1] | G8 = 1}. Let) be a binary rooted tree of depth

3 = log
2
(=) +$(1)with := + 1 leaves. Identify leaves of) with elements of [:= + 1]. For a node

E of), let)E be the set of all leaves of) that are descendants of E. Once again, we view)E as a

subset of [:= + 1].

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 21

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

The protocol proceeds in at most 3 iterations. After 8 iterations, for 8 = 0, . . . 3, parties agree

on a node E of) of depth 8, satisfying the following invariant:

:∑
A=1

|supp(GA) ∩)E | < |)E |. (5.1)

At the beginning, Invariant (5.1) holds just because E is the root,)E = [:= + 1] and each supp(GA)
is of size =.

After 3 iterations, E = ; is a leaf of). Parties output ;. This is correct because by (5.1) we

have |); | = 1 =⇒ |supp(GA) ∩); | = 0 =⇒ GA
;
= 0 for every A ∈ [:].

Let us now explain what parties do at each iteration. If the current E is not a leaf, let E0 , E1

be two children of E. Each party sends |supp(GA) ∩)E0
| and |supp(GA) ∩)E1

|, using $(log =) bits.
Since)E0

and)E1
is a partition of)E , we have:

1∑
1=0

:∑
A=1

��
supp(GA) ∩)E1

�� = :∑
A=1

|supp(GA) ∩)E | < |)E | =
1∑
1=0

|)E1 |.

Thus the inequality:

:∑
A=1

��
supp(GA) ∩)E1

�� < |)E1 | (5.2)

is true either for 1 = 0 or for 1 = 1. Let 1∗ be the smallest 1 ∈ {0, 1} for which (5.2) is true. Parties

replace E by E1∗ and proceed to the next iteration.

There are 3 = $(log =) iterations, each takes $(log =) bits of communication. Hence � has

depth $(log
2 =), as required. �

Remark 5.10. The strategy from the proof of Proposition 5.3 is efficient only in terms of the

number of rounds. In the next section, we present another version of this strategy. It will give

us not only low depth but also explicit polynomial-size circuits. For that, however, we require a

bit more from protocols for the &:-communication games.

6 Effective version

Fix 5 ∈ &: . We say that a dag-like communication protocol � strongly computes the &:-

communication game for 5 if for every terminal C of � and for every G ∈ 5 −1(0) the following

holds. If G is 8-compatible with C for some 8 ∈ [:], then G 9 = 0, where 9 = ;(C) is the label of the
terminal C in the protocol �. In other words, there should be a path ? to C such that, first, G;(C) = 0,

and second, one of the parties is compatible with this path on input G. That is, for every node of

? from where this party is the one to communicate, it communicates along ? on G. We stress

that there might be no tuple from (5 −1(0)): which includes G and visits C. Hence, a protocol

which computes the &:-hypotheses game for 5 might not compute it in the strong sense.

Similarly, fix 5 ∈ ': . We say that a dag-like communication protocol � strongly computes the

':-communication game for 5 if for every terminal C of � and for every G ∈ 5 −1(0) the following

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 22

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

holds. If G is 8-compatible with C for some 8 ∈ [:], then G 9 = 1, where (9 , 1) = ;(C) is the label of
the terminal C in the protocol �.

Next, we prove an effective version of Proposition 5.3.

Theorem 6.1. For every constant : ≥ 2 there exists a polynomial-time algorithm� such that the following
holds. Assume that 5 ∈ &: and � is a dag-like protocol which strongly computes the &:-communication
game for 5 . Then, given the light form of �, the algorithm � outputs a &:-circuit � ≤ 5 such that
depth(�) is linear in depth(�) and size(�) is polynomial in size(�).

Proof. Let 3 = depth(�). We will again give an $(3)-round winning strategy of Learner in the

&:-hypotheses game for 5 . This time, however, we will ensure that, given the light form of �,
the light form of our strategy can be computed in polynomial time (in particular, its size will be

polynomial in size(�)). By Proposition 3.1, this will give us a &:-circuit � ≤ 5 of depth $(3)
whose size is polynomial in size(�) and which is polynomial-time computable from the light

form of �.
Instead of specifying the light form of our strategy directly, we will use the following trick.

Assume that Learner has a working tape consisting of $(log size(�)) cells, where each cell can

store one bit. Learner memorizes all the Nature’s responses so that it always knows the current

position of the game. But it does not store the sequence of Nature’s responses on the working

tape (there might be no space for it). Instead, it first makes its hypotheses which depend on the

current position. Then it receives a Nature’s response A ∈ {0, 1, . . . , :}. And then it modifies the
working tape, but the result must depend only on the current content of the working tape and

on A (and not on the current position in a game). Moreover, we will ensure that modifying the

working tape takes polynomial time given the light form of �.
The main purpose of the working tape manifests itself in the end. Namely, at some point,

Learner decides to stop making hypotheses. This should be indicated on the working tape.

More importantly, Learner’s output must depend only on the content of the working tape in

the end (and not on the whole sequence of Nature’s responses). Moreover, this should take

polynomial time to compute that output, given the light form of �.
If a strategy satisfies these restrictions, then its light form is polynomial-time computable

from the light form of �. Indeed, the underlying dag will consist of all possible configurations of

the working tape. Their number is polynomial in size(�), because there are $(log size(�)) bits
on the working tape. For all non-terminal configurations 2 we go through all A ∈ {0, 1, . . . , :}.
We compute what would be a configuration 2A of the working tape if the current configuration

is 2 and Nature’s response is A. After that we connect 2 to 20 , 21 , . . . , 2: . Finally, we compute the

outputs of Learner in all terminal configurations. This gives the light form of our strategy in

time polynomial in size(�).
Let + be the set of nodes of � and) be the set of terminals of �. We will work with

multidimensional arrays of nodes. Namely, we will consider :-dimensional arrays in which every

dimension is indexed by integers from [:]. Formally, such arrays are functions of the form

" : [:]: → + . We will use the notation "[21 , . . . , 2:] for the value of " on (21 , . . . , 2:) ∈ [:]: .
We will use a slightly stronger notion of completeness than in the proof of Proposition 5.3.

Definition 6.2. We say that a multidimensional array " : [:]: → + is complete for a set

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 23

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

Z ⊆ 5 −1(0) if there exists a function , : Z → [:] such that the following holds. For every

I ∈ Z, for every 8 ∈ [:] and for every (21 , . . . , 2:) ∈ [:]: such that 28 = ,(I) it holds that the
node "[21 , . . . , 2:] is 8-compatible with I in the protocol �. We also say that such , establishes
completeness of " forZ.

We stress that in this definition "[21 , . . . , 2:] should be 8-compatible with I even if there

is no tuple (I1 , . . . , I:) with (,(I1), . . . , ,(I:)) = (21 , . . . , 2:). Intuitively, we can afford such a

strong notion of completeness (compared to the proof of Proposition 5.3) because this time �
computes the &:-communication game for 5 in the strong sense.

We now describe the Learner’s strategy. It proceeds in 3 iterations, each iteration takes $(1)
rounds of the &:-hypotheses game. The working tape of Learner consists of:

• an integer 8C4A;

• a multidimensional array " : [:]: → + ;

• $(1) additional bits of memory.

The integer 8C4A will never exceed 3 ≤ size(�), so to store all this information we will need

$(log(size(�))) bits, as required. At each moment, 8C4A equals the number of iterations

performed so far (at the beginning, 8C4A = 0). Learner updates " only at moments when 8C4A is

incremented by 1. So let "ℎ denote the content of the array " when 8C4A = ℎ (that is, after ℎ

iterations). Learner stops making hypotheses when 8C4A = 3 (that is, after 3 iterations).

We call an array of nodes ℎ-low if every node in it is either a terminal or of depth at least ℎ.

Learner maintains the following invariant.

Invariant 6.3. "ℎ is ℎ-low and"ℎ is complete for the setZℎ of all I ∈ 5 −1(0) that are compatible

with Nature’s responses after ℎ iterations.

At the beginning, Learner sets every element of "0 to be the starting node of � so that

Invariant 6.3 trivially holds.

Now, let us show that when 8C4A = 3, Learner is able to output a correct answer to the

&:-hypotheses game in polynomial time, knowing only the current content of the working tape

and the light form of �. Indeed, observe that"3 consists only of terminals. Hence it is sufficient

to establish the following lemma.

Lemma 6.4. Assume that " : [:]: →) is complete for Z ⊆ 5 −1(0). Let ; be the output of � in the
terminal "[1, 2, . . . , :]. Then I; = 0 for everyZ.

Proof. Since � strongly computes the &:-communication game for 5 , it is enough to show that

every I ∈ Z is 8-compatible with "[1, 2, . . . , :] for some 8 ∈ [:]. Take , : Z → [:] establishing
completeness of " forZ. By definition, I is ,(I)-compatible with "[1, 2, . . . , :]. �

Finally, we need to perform an iteration. Assume that ℎ iterations passed and Invariant 6.3

still holds. Let *ℎ be the set of nodes appearing in "ℎ . Take any function , : Zℎ → [:]
establishing completeness of "ℎ forZℎ .

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 24

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

For any I ∈ 5 −1(0) we denote by ?I a communication profile of I with respect to*ℎ (we use

the same notion of a communication profile as in the proof of Proposition 5.3). Recall that ?I is

an element of {0, 1}*ℎ
, i. e., a function from*ℎ to {0, 1}. Learner wants to gain some information

about the pair (?I , ,(I)). In the beginning, Learner only knows that (?(I), ,(I)) ∈ {0, 1}*ℎ × [:].
His goal is to narrow down the set of all possible values of the pair (?(I), ,(I)) to : values. He

does so in the same manner as in the proof of Proposition 5.3. Namely, in each round Learner

asks Nature to specify some (?, 2) ∈ {0, 1}*ℎ × [:] such that (?I , ,(I)) ≠ (?, 2). Learner can

do this until there are only : pairs from (?1 , 21), . . . , (?: , 2:) ∈ {0, 1}*ℎ × [:] left which are not

rejected by Nature. Learner stores each rejected (?, 2) on the working tape so that in the end he

knows (?1 , 21), . . . , (?: , 2:). This takes 2
|*ℎ | · : − : = $(1) rounds of the &:-hypotheses game

and $(1) additional bits of memory (we will free this memory once we compute "ℎ+1 so that

we can use it again in the next iteration). After that, the (ℎ + 1)st iteration is finished. Let us

observe that for any I which is compatible with the Nature’s responses after ℎ + 1 iterations it

holds that (?I , ,(I)) ∈ {(?1 , 21), . . . , (?: , 2:)}, i.e,

(?I , ,(I)) ∈ {(?1 , 21), . . . , (?: , 2:)} for all I ∈ Zℎ+1. (6.1)

After that, Learner updates "ℎ . He only needs to know (?1 , 21), . . . , (?: , 2:) (they can be

extracted from the content of the working tape) and the light form of �. Namely, Learner deter-

mines"ℎ+1[31 , . . . , 3:] for (31 , . . . , 3:) ∈ [:]: as follows. Consider the node E = "ℎ[231
, . . . , 23:].

If E is a terminal, then set "ℎ+1[31 , . . . , 3:] = E. Otherwise, let 8 ∈ [:] be the index of the party

communicating at E. Look at ?38 , it is a function from *ℎ to {0, 1}. Define A = ?38 (E). Among

two edges, starting at E, choose one which is labeled by A. Descend along this edge from E and

let the resulting successor of E be "ℎ+1[31 , . . . , 3:].
Obviously, computing "ℎ+1 takes time polynomial in size(�). To show that Invariant 6.3 is

maintained, we have to show that (a) "ℎ+1 is (ℎ + 1)-low and (b) "ℎ+1 is complete forZℎ+1.

The first part, (a), holds because each "ℎ+1[31 , . . . , 3:] is either a terminal or a successor of

a node of depth at least ℎ. For (b) we define the following function:

,′ : Zℎ+1 → [:], ,′(I) = 8 , where 8 is such that (?I , ,(I)) = (?8 , 28).

By (6.1) this definition is correct. We will show that ,′ establishes completeness of "ℎ+1 for

Zℎ+1.

For that, take any I ∈ Zℎ+1, 8 ∈ [:] and (31 , . . . , 3:) ∈ [:]: such that 38 = ,′(I). We shall

show that I is 8-compatible with a node "ℎ+1[31 , . . . , 3:]. By definition of ,′, we have that

,(I) = 238 . Recall that the function , establishes completeness of "ℎ forZℎ . This means that I

is 8-compatible with E = "[231
, . . . , 23:]. If E is a terminal, then "ℎ+1[31 , . . . , 3:] = E and there

is nothing left to prove.

Otherwise, E ∈ + \). Let 9 be the index of the party communicating at E. By definition,

"ℎ+1[31 , . . . , 3:] is a successor of E. If 9 ≠ 8, then any successor of E is 8-compatible with I

(because the 9th party communicates at E, not the 8th one). Finally, assume that 9 = 8. The node

"ℎ+1[31 , . . . , 3:] is obtained from E by descending along the edge which is labeled by A = ?38 (E).
Hence, to show that I is 8-compatible with "ℎ+1[31 , . . . , 3:], we should verify that the 8th party

transmits A at E on input I. Recall that ,′(I) = 38 , which by definition of ,′ means that ?I = ?38 .

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 25

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

That is, ?38 is the communication profile of I with respect to*ℎ . In particular, A = ?38 (E) = ?I(E)
is the bit transmitted by the 8th party on input I at E, as required. �

By the same argument, one can obtain an analog of the previous theorem for the ': case.

Theorem 6.5. For every constant : ≥ 2 there exists a polynomial-time algorithm� such that the following
holds. Assume that 5 ∈ ': and � is a dag-like protocol which strongly computes the ':-communication
game for 5 . Then, given the light form of �, the algorithm � outputs an ':-circuit � ≤ 5 such that
depth(�) is linear in depth(�) and size(�) is polynomial in size(�).

7 Derivation of Theorems 1.1 and 1.3

In this section, we obtain Theorems 1.1 and 1.3 by devising protocols strongly computing the

corresponding &:-communication games. Unfortunately, establishing strong computability

requires diving into straightforward but tedious technical details, even for simple protocols.

Alternative proof of Theorem 1.1. We will show that there exists a protocol � of depth $(log =)
with a polynomial-time computable light form, strongly computing the &2-communication

game for MAJ
2=+1

. By Theorem 6.1, this means that there is a polynomial-time computable

MAJ
3
-formula � ≤ MAJ

2=+1
of depth $(log =). From the self-duality of MAJ

2=+1
and MAJ

3
it

follows that � computes MAJ
2=+1

.

Due to the AKS sorting network, there exists a polynomial-time computable monotone

formula �′ of depth $(log =) for MAJ
2=+1

. Consider the following communication protocol �.
The tree of � coincides with the tree of �′. Inputs to �′ will be leaves of �. In a leaf containing an

input variable G8 the output of the protocol � is 8. Remaining nodes of � are ∧-gates and ∨-gates.
The first party communicates in ∧-gates, while the second party communicates in ∨-gates. Let
us now define how the parties communicate.

Fix an ∧-gate , (which belongs to the first party). Let ,0 , ,1 be gates that are fed to ,, i. e.,
, = ,0 ∧ ,1. There are two edges, starting at ,, one leads to ,0 (and is labeled by 0) and the other

leads to ,1 (and is labeled by 1). Take an input 0 ∈ MAJ
−1

2=+1
(0) to the first party. Having input 0,

the first party transmits the bit A = min{2 ∈ {0, 1} | ,2(0) = 0} at the gate ,. If the minimum is

over the empty set, we set A = 0.

Take now an ∨-gate ℎ (belonging to the second party). Similarly, there are two edges starting

at ℎ, one leads to a gate ℎ0 (and is labeled by 0) and the other leads to a gate ℎ1 (and is labeled by

1). Take an input 1 ∈ MAJ
−1

2=+1
(0) to the second party. Having input 1, the second party transmits

the bit A = min{2 ∈ {0, 1} | ℎ2(¬1) = 1} at the gate ℎ. If the minimum is over the empty set, then

we set A = 0. Here ¬ denotes the bitwise negation. Description of the protocol � is finished.

Clearly, the protocol � is of depth $(log =) and its light form is polynomial-time computable.

It remains to argue that the protocol strongly computes the &2-communication game for

MAJ
2=+1

. Nodes of the protocol may be identified with gates of �′. Consider any path

? = 〈41 , . . . , 4<〉 in the protocol � which starts in the output gate ,0
. Assume that 4 9 is an edge

from , 9−1
to , 9 . We shall show the following: if 0 ∈ MAJ

−1

2=+1
(0) is 1-compatible with ?, then

,0(0) = ,1(0) = . . . = ,<(0) = 0. Indeed, ,0(0) = 0 holds because �′ computes MAJ
2=+1

. Now,

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 26

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

assume that , 9(0) = 0 is already proved. If , 9 is an-∨ gate, then , 9+1(0) = 0 just because , 9+1

feds to , 9 . Otherwise, , 9 is an ∧-gate which therefore belongs to the first party. Let A ∈ {0, 1} be
the label of the edge 4 9+1. Note that , 9+1 = ,

9
A , where ,

9

0
, ,

9

1
are two gates which are fed to , 9 .

Since 0 is 1-compatible with ?, it holds that A coincides with the bit that the first party transmits

at , 9 on input 0, i. e., with min{2 ∈ {0, 1} | , 92(0) = 0}. The set over which the minimum is

taken is non-empty, because , 9(0) = 0. In particular, A belongs to this set, which means that

, 9+1(0) = ,
9
A(0) = 0, as required.

Similarly, one can verify that if 1 ∈ MAJ
−1

2=+1
(0) is 2-compatiblewith ?, then ,0(¬1) = ,1(¬1) =

. . . = ,<(¬1) = 0. Overall, we get that if a leaf ; contains a variable G8 and ; is 1-compatible with

0 then 08 = 0, and if ; is 2-compatible with 1 then ¬18 = 1.

Hence the protocol strongly computes the &2-communication game for MAJ
2=+1

. �

Proof of Theorem 1.3. We will use the same protocol as in the proof of Corollary 5.9. This time,

however, we have to define its light formmore explicitly. Wewill obtain polynomial-size dag-like

protocol of depth $(log
2 =) with a polynomial-time computable light form, which strongly

computes the &:-communication game for THR
:=+1

=+1
. By Theorem 6.1, this means that there is a

polynomial-time computable &:-circuit � ≤ THR
:=+1

=+1
of depth $(log

2 =). By an argument from

Corollary 5.9, the circuit � coincides with THR
:=+1

=+1
.

We will use the same tree) as in the proof of Corollary 5.9. That is,) is a tree of depth

$(log =)with := + 1 leaves. We identify its leaves with elements of [:= + 1]. Every node E of

) is associated with the set)E ⊆ [:= + 1] of leaves that are descendants of E. We also use a

notation supp(G) = {8 ∈ [:= + 1] | G8 = 1} for G ∈ {0, 1}:=+1
.

Let us specify the underlying dag � of our protocol �. For a node E of), let SE be the set of
all tuples (B1 , B2 , . . . , B:) ∈ {0, 1, . . . , := + 1}: such that B1 + B2 + . . . + B: < |)E |. For every node

E of) and for every (B1 , B2 , . . . , B:) ∈ SE the dag � will contain a node identified with a tuple

(E, B1 , B2 , . . . , B:). These nodes of � will be called main nodes (there will be some other nodes

too). Observe that the number of main nodes is polynomial in =. The starting node of � will be

(A, =, . . . , =), where A is the root of). Note that if ; is a leaf of), then |); | = 1. Hence, the only

main node having ; as the first coordinate is (; , 0, . . . , 0). The set of terminals of � will coincide

with the set of all main nodes of the form (; , 0, . . . , 0), where ; is a leaf of). The output of � in

(; , 0, . . . , 0) is ;.
The communication in � is arranged as follows. First, we assume for simplicity that every

party has a vector with exactly = ones (if there are less than = ones, one can add a necessary

amount of ones to the input). The communication proceeds in$(log =) phases. In the beginning

of each phase, the parties belong to some main node (E, B1 , . . . , B:). Then the first party sends

two non-negative integers that sum up to B1. After that, the second party sends two non-

negative integers that sum up to B2, and so on. More specifically, if the input to the 8th party is

G ∈ {0, 1}:=+1
and |)E∩supp(G)| ≤ B8 , then the 8th party sends |)E0

∩supp(G)| and |)E1
∩supp(G)|,

where E0 and E1 are two successors of E. Otherwise, it sends any two numbers that sum up to B8 .

When all the numbers are sent, the parties move to some other main node. More specifically,

let 08 and 18 be numbers sent by the 8th party. If 01 + . . . + 0: < |)E0
|, the parties move the main

node (E0 , 01 , . . . , 0:). Now, assume that 01 + . . . + 0: ≥ |)E0
|. We claim that in this case we have

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 27

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

11 + . . . + 1: < |)E1
|. This is because by definition (01 + . . . + 0:) + (11 + . . . + 1:) = B1 + . . . + B: <

|)E | = |)E0
| + |)E1

|. So if 01 + . . . + 0: ≥ |)E0
|, the parties move to the main node (E1 , 11 , . . . , 1:).

Observe that if the input to the 8th party, G, has exactly = ones, then throughout any execution

of the protocol we have |)E ∩ supp(G)| = B8 , where (E, B1 , . . . , B:) is our current main node. In

other words, if a vector G ∈ {0, 1}:=+1
with = ones is 8-compatible with amain node (E, B1 , . . . , B:),

then |)E ∩ supp(G)| = B8 . This implies that � strongly computes the &:-communication game for

THR
:=+1

=+1
. Indeed, if a terminal (; , 0, . . . , 0) is 8-compatible with G, then |; ∩ supp(G)| = 0, that is,

G; = 0. In other words, the output of � in (; , 0, . . . , 0) is a correct answer for G, as required.

Overall, the light form of � looks as follows. It consists of polynomially many main nodes

that are arranged in a tree of depth $(log =). Each main node has a protocol of depth $(log =)
attached to it. The leaves of this protocol are merged with some main nodes on the next level

of). Thus, � is of depth $(log
2 =) and polynomial size, and its light form is polynomial-time

computable. �

8 Direct proof of Theorem 1.1

In this section we distill from our argument a direct proof of Theorem 1.1.We show that there

exists a deterministic polynomial-time algorithm performing the following transformation

• Input: a monotone formula � of depth 3 computing MAJ
2=+1

;

• Output: a MAJ
3
-formula Φ of depth 3 + $(log =) computing MAJ

2=+1
.

The existence of such an algorithm implies Theorem 1.1. Indeed, take the AKS sorting

network and extract from it a polynomial-time computable monotone formula of depth $(log =)
computing MAJ

2=+1
. Then just plug � into the transformation above. So it only remains to

explain how to perform this transformation in polynomial time.

In the proof by {0, 1}2=+1

≤= we denote the set of all (2= + 1)-bit vectors with at most = ones.

This is also the set of vectors where MAJ
2=+1

equals 0. For G ∈ {0, 1}2=+1
we denote by ¬G the

bitwise negation of G.

The following observation simplifies our task.

Observation 8.1. Assume that Φ is a MAJ
3
-formula and

Φ(G) = 0 for any G ∈ {0, 1}2=+1

≤= .

Then Φ computes MAJ
2=+1

.

Proof. It is already given that Φ equals 0 everywhere, where MAJ
2=+1

equals 0. It remains to

show that Φ equals 1 everywhere, where MAJ
2=+1

equals 1. For that, we take any G ∈ {0, 1}2=+1

with at least = + 1 ones and show that Φ(G) = 1. Formula Φ is constructed from self-dual gates

and hence computes a self-dual function (recall that a Boolean function is self-dual if it takes

opposite values in opposite vertices of the Boolean cube). This means that Φ(G) = ¬Φ(¬G).
Finally, notice that Φ(¬G) = 0 because ¬G ∈ {0, 1}2=+1

≤= . �

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 28

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

The construction can naturally be split into two independent steps.

• Step 1. For any two distinct 8 , 9 ∈ [2= + 1] construct from � a MAJ
3
-formula Φ8 , 9 of depth 3

(i. e., of the same depth as �) such that

Φ8 , 9(G) = 0 for any G ∈ {0, 1}2=+1

≤= such that G8 + G 9 = 1.

• Step 2. Assemble from the formulasΦ8 , 9 a MAJ
3
-formulaΦ of depth 3+$(log =) satisfying

Φ(G) = 0 for all G ∈ {0, 1}2=+1

≤= .

By Observation 8.1 the formula Φ from the step 2 will compute MAJ
2=+1

.

Step 1. We obtain Φ8 , 9 from � in a way described in Figure 2. We only have to show that

x1 x2 x2n+1

∧
∨

x1 x2 x2n+1

MAJ3

MAJ3

∧

g1 g2

MAJ3

g1 g2 xi

∨

g1 g2

MAJ3

g1 g2 xj

Formula F Formula Φi,j

Figure 2: Transforming � into Φ8 , 9 .

for all G ∈ {0, 1}2=+1

≤= with G8 + G 9 = 1 we have Φ8 , 9(G) = 0. The argument is different for the

following two cases.

• Case 1: G8 = 0 and G 9 = 1.

• Case 2: G8 = 1 and G 9 = 0.

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 29

http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

Both cases rely on the following observation. Notice that Φ8 , 9(G) = MAJ
2=+1
(G) for all G ∈

{0, 1}2=+1
with G8 = 0, G 9 = 1. This is because when we plug in G8 = 0, G 9 = 1 into Φ8 , 9 , we obtain

a formula which is equivalent to �. Indeed, every MAJ
3
-gate in Φ8 , 9 that were obtained from

an ∧-gate of � turns back into an ∧-gate. Similarly, every MAJ
3
-gate in Φ8 , 9 that were obtained

from an ∨-gate of � turns back into an ∨-gate. To see this, note that MAJ
3
(,1 , ,2 , 0) = ,1 ∧ ,2

and MAJ
3
(,1 , ,2 , 1) = ,1 ∨ ,2.

Case 1. This is an immediate consequence of the above observation. Formula Φ8 , 9 coincides

with MAJ
2=+1

every time G8 = 0, G 9 = 1, and for G ∈ {0, 1}2=+1

≤= we have MAJ
2=+1
(G) = 0.

Case 2. Here we use a self-duality argument. Consider the bitwise negation of G. Since

¬G has at least = + 1 ones, we have MAJ
2=+1
(¬G) = 1. Next, since (¬G)8 = 0, (¬G)9 = 1, we

have Φ8 , 9(¬G) = MAJ
2=+1
(¬G) = 1 by our observation. Finally, due to self-duality, Φ8 , 9(G) =

¬Φ8 , 9(¬G) = 0, as required.

Step 2. We show that for any (⊆ [2= + 1], |(| ≥ 2 one can construct (in deterministic

polynomial time) a MAJ
3
-formula Φ(of depth at most 3 + 1 + log

9/8(|(|) such that:

Φ((G) = 0 for all G ∈ {0, 1}2=+1

≤= such that G8 = 0 for some 8 ∈ (.

By setting Φ = Φ[2=+1] we obtain a formula which is 0 everywhere on {0, 1}2=+1

≤= , as required.

Indeed, every G ∈ {0, 1}2=+1

≤= has a 0-coordinate in [2= + 1].
The construction is recursive. Assume first that |(| ≥ 3. Partition (into 3 disjoint subsets

(1 , (2 , (3 of sizes b|(|/3c , b|(|/3c and |(| − 2b|(|/3c. Construct recursively Φ(1∪(2
,Φ(1∪(3

,Φ(2∪(3

and then set

Φ(= MAJ
3
(Φ(1∪(2

,Φ(1∪(3
,Φ(2∪(3

) .
If |(| = 2 and (= {8 , 9}, set

Φ{8 , 9} = MAJ
3
(Φ8 , 9 , G8 , G 9),

where Φ8 , 9 is from the previous step. Description of the construction is finished. It remains to

explain why this construction is correct, why the depth of Φ(is at most 3 + 1 + log
9/8(|(|) and

why the construction takes polynomial time.

• A recursive call is always for sets of smaller size. More specifically, it holds that:

|(1 ∪ (2 |, |(1 ∪ (3 |, |(2 ∪ (3 | ≤
8

9

· |(|. (8.1)

Indeed, the sizes of (1∪(2 , (1∪(3 , (2∪(3 do not exceed |(| − b|(|/3c ≤ |(| − |(|/3+ 2/3 =
2/3 · (|(| + 1) ≤ 2/3 · (|(| + |(|/3) = 8/9 · |(|.

• We now show, by induction on |(|, that Φ((G) = 0 for all G ∈ {0, 1}2=+1

≤= that have a

0-coordinate in (. First, consider the case (= {8 , 9}. If there are exactly one 0-coordinate

among 8 , 9, then by definition Φ8 , 9(G) = 0 and hence Φ{8 , 9}(G) = MAJ
3
(Φ8 , 9(G), G8 , G 9) =

MAJ
3
(0, 0, 1) = 0. If both G8 = 0 and G 9 = 0, then Φ{8 , 9}(G) = MAJ

3
(Φ8 , 9(G), 0, 0) = 0.

Now, consider the case |(| ≥ 3. A 0-coordinate of G lying in (lies also in exactly

2 sets out of (1 ∪ (2 , (1 ∪ (3 , (2 ∪ (3. Hence, by the induction hypothesis, among

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 30

http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

Φ(1∪(2
(G),Φ(1∪(3

(G),Φ(2∪(3
(G) there are at least 2 zeroes. This means that Φ((G) =

MAJ
3
(Φ(1∪(2

(G),Φ(1∪(3
(G),Φ(2∪(3

(G)) = 0.

• Again, by induction on |(| one can show that

depth(() ≤ 3 + 1 + log
9/8(|(|),

For (= {8 , 9} the depth of Φ{8 , 9} is depth(Φ8 , 9) + 1 = 3 + 1 ≤ 3 + 1 + log
5/4(|(|). For |(| ≥ 3

assume that the claim is proved for Φ(1∪(2
,Φ(1∪(3

,Φ(2∪(3
. Then

depth(Φ() = 1 +max {depth(Φ(1∪(2
), depth(Φ(1∪(3

), depth(Φ(2∪(3
)}

≤ 1 + 3 + 1 + log
9/8

(
8

9

· |(|
)

= 3 + 1 + log
9/8(|(|).

In the second line, we use the induction hypothesis (8.1).

• Similarly, the tree of recursive calls for Φ(has depth at most log
9/8(|(|) and hence

polynomial size. Therefore, the whole construction takes polynomial time.

9 Open problems

• Can the&:-communication game for THR
:=+1

=+1
be solved in >(log

2 =) bits of communication

for : ≥ 3? Equivalently, can THR
:=+1

=+1
be computed by a &:-circuit of depth >(log

2 =) ? Or

at least by an ':-circuit of depth >(log
2 =) ?

• Are there any other interesting functions in &: and ': which can be analyzed with our

technique?

References

[1] Miklós Ajtai, János Komlós, and Endre Szemerédi: Sorting in 2 log = parallel steps.

Combinatorica, 3(1):1–19, 1983. Preliminary version in STOC’83. [doi:10.1007/BF02579338]

2, 15

[2] Gil Cohen, Ivan Bjerre Damgård, Yuval Ishai, Jonas Kölker, Peter Bro Miltersen, Ran Raz,

and Ron D. Rothblum: Efficient multiparty protocols via log-depth threshold formulae.

In Proc. 33rd Ann. Internat. Cryptology Conf. (CRYPTO’13), pp. 185–202. Springer, 2013.
[doi:10.1007/978-3-642-40084-1_11, ECCC:TR13-107] 2, 3, 4, 5

[3] Irit Dinur and Or Meir: Toward the KRW composition conjecture: Cubic formula

lower bounds via communication complexity. Comput. Complexity, 27(3):375–462, 2018.
Preliminary version in CCC’16. [doi:10.1007/s00037-017-0159-x] 2

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 31

https://doi.org/10.1145/800061.808726
http://dx.doi.org/10.1007/BF02579338
http://dx.doi.org/10.1007/978-3-642-40084-1_11
https://eccc.weizmann.ac.il/report/2013/107
https://doi.org/10.4230/LIPIcs.CCC.2016.3
http://dx.doi.org/10.1007/s00037-017-0159-x
http://dx.doi.org/10.4086/toc

ALEXANDER KOZACHINSKIY AND VLADIMIR PODOLSKII

[4] Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson: Toward better formula

lower bounds: The composition of a function and a universal relation. SIAM J. Com-
put., 46(1):114–131, 2017. Preliminary version in STOC’14. [doi:10.1137/15M1018319,

ECCC:TR13-190] 2

[5] Oded Goldreich: On (Valiant’s) polynomial-size monotone formula for majority. In Oded

Goldreich, editor, Computational Complexity and Property Testing: On the Interplay Between
Randomness and Computation, pp. 17–23. Springer, 2020. Earlier versions on author’s website:

2011 version, 2019 version. [doi:10.1007/978-3-030-43662-9_3] 2

[6] Mika Göös and Toniann Pitassi: Communication lower bounds via critical block

sensitivity. SIAM J. Comput., 47(5):1778–1806, 2018. Preliminary version in STOC’14.

[doi:10.1137/16M1082007] 2

[7] Arvind Gupta and Sanjeev Mahajan: Using amplification to compute majority with small

majority gates. Comput. Complexity, 6(1):46–63, 1996. [doi:10.1007/BF01202041] 3

[8] Stasys Jukna: Boolean Function Complexity: Advances and Frontiers. Springer, 2012. Summary

in Bull. EATCS 2014. [doi:10.1007/978-3-642-24508-4] 9

[9] Mauricio Karchmer, Ran Raz, and Avi Wigderson: Super-logarithmic depth lower bounds

via the direct sum in communication complexity. Comput. Complexity, 5(3–4):191–204, 1995.
Preliminary version in SCT’91. [doi:10.1007/BF01206317] 2

[10] Mauricio Karchmer and Avi Wigderson: Monotone circuits for connectivity require

super-logarithmic depth. SIAM J. Discr. Math., 3(2):255–265, 1990. Preliminary version in

STOC’88. [doi:10.1137/0403021] 1

[11] Alexander Kozachinskiy and Vladimir Podolskii: MultipartyKarchmer–Wigderson games

and threshold circuits. In Proc. 35th Comput. Complexity Conf. (CCC’20), pp. 24:1–23. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020. [doi:10.4230/LIPIcs.CCC.2020.24] 1

[12] Anup Rao and Amir Yehudayoff: Communication Complexity and Applications. Cambridge

Univ. Press, 2020. [doi:10.1017/9781108671644] 1

[13] Ran Raz and Pierre McKenzie: Separation of the monotone NC hierarchy. Combinatorica,
19(3):403–435, 1999. Preliminary version in FOCS’97. [doi:10.1007/s004930050062] 2

[14] Dmitry Sokolov: Dag-like communication and its applications. In Proc. Comp. Sci.
Symp. in Russia (CSR’17), pp. 294–307. Springer, 2017. [doi:10.1007/978-3-319-58747-9_26,
ECCC:TR16-202] 2, 10

[15] Leslie G. Valiant: Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984. [doi:10.1016/0196-6774(84)90016-6] 2

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 32

https://doi.org/10.1145/2591796.2591856
http://dx.doi.org/10.1137/15M1018319
https://eccc.weizmann.ac.il/report/2013/190
http://www.wisdom.weizmann.ac.il/~oded/PDF/mono-maj.pdf
http://www.wisdom.weizmann.ac.il/~oded/COL2/mono-maj.pdf
http://dx.doi.org/10.1007/978-3-030-43662-9_3
https://doi.org/10.1145/2591796.2591838
http://dx.doi.org/10.1137/16M1082007
http://dx.doi.org/10.1007/BF01202041
http://eatcs.org/beatcs/index.php/beatcs/article/view/275
http://dx.doi.org/10.1007/978-3-642-24508-4
https://doi.org/10.1109/SCT.1991.160273
http://dx.doi.org/10.1007/BF01206317
https://doi.org/10.1145/62212.62265
http://dx.doi.org/10.1137/0403021
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.24
http://dx.doi.org/10.1017/9781108671644
https://doi.org/10.1109/SFCS.1997.646112
http://dx.doi.org/10.1007/s004930050062
http://dx.doi.org/10.1007/978-3-319-58747-9_26
https://eccc.weizmann.ac.il/report/2016/202
http://dx.doi.org/10.1016/0196-6774(84)90016-6
http://dx.doi.org/10.4086/toc

MULTIPARTY KARCHMER–WIGDERSON GAMES AND THRESHOLD CIRCUITS

AUTHORS

Alexander Kozachinskiy

Scientific Researcher

Department of Mathematical Logic

Steklov Mathematical Institute

Moscow, Russia

kozlach mail.ru

https://kozlachinskiy.github.io/

Vladimir Podolskii

Leading Scientific Researcher

Steklov Mathematical Institute and

HSE University

Moscow, Russia

podolskii.vv gmail com

https://homepage.mi-ras.ru/~podolskii/

ABOUT THE AUTHORS

Alexander Kozachinskiy grew up in Moscow. For about 10 years, he was at the

Moscow State University, first as an undergraduate, and then as a Ph.D. student

advised by Nikolay Vereshchagin. He defended his thesis titled “Comparison of

Communication, Information andDecision Tree Complexities” in 2019. Currently

he works as a research fellow at the Steklov Mathematical Institute. He likes

to invent algorithms in areas like Circuit Complexity, where people are mostly

interested in lower bounds. Besides complexity, he works on Graph Games.

Vladimir Podolskii is a leading scientific researcher at the Steklov Mathematical

Institute. He also holds a part-time position at HSEUniversity. His main research

interests are computational complexity, tropical algebra and logical foundations

of computer science. He graduated from Moscow State University in 2009,

advised by Nikolay Vereshchagin (and earlier by Alexander Razborov).

THEORY OF COMPUTING, Volume 18 (15), 2022, pp. 1–33 33

https://kozlachinskiy.github.io/
https://homepage.mi-ras.ru/~podolskii/
https://www.hse.ru/en/staff/vereshchagin
http://mi-ras.ru/index.php?l=1
http://mi-ras.ru/index.php?l=1
http://mi-ras.ru/index.php?l=1
https://www.hse.ru/en/
https://www.msu.ru/en/
http://dx.doi.org/10.4086/toc

	Introduction
	Applications to circuits
	Applications to Multiparty Secure Computations
	Multiparty Karchmer–Wigderson games
	Connection to threshold gates and the main result
	Our techniques: hypotheses games
	Organization of the paper

	Preliminaries
	Dags and dag-like communication protocols

	Formal treatment of Qk-hypotheses and Rk-hypotheses games
	Results for Majority
	Proof of the Main Theorem
	From circuits to protocols
	From protocols to circuits

	Effective version
	Derivation of Theorems 1.1 and 1.3
	Direct proof of Theorem 1.1
	Open problems
	References

