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1 Introduction

1.1 Background and motivation

The minimum bisection problem is a well-known NP-hard problem [21], in which given a graph G one
aims to find a partition of the vertex set of G into two classes of equal size (up to £1) so as to minimise
the number of crossing edges between the two classes, called the bisection width. We denote by bis(G)
the minimum bisection width of G.

Since the early days of computational complexity, graph partitioning problems, e. g., the minimum
bisection problem, have played a central role in computer science [21, 28]. Over the years they have
inspired some of the most important algorithmic techniques that we have at our disposal today, such as
network flows or semidefinite programming [3, 18, 22, 29, 42].

In the context of the probabilistic analysis of algorithms, it is hard to think of a more intensely
studied problem than the planted bisection model. In this model a random graph G = G(n,p+1,p_1)
on vertex set [n] = {1,...,n} is created by choosing a map ¢ : V — {—1,1} uniformly at random
subject to ‘ lo= ()| —|o~ " (=1) ‘ < 1 and connecting any two vertices v # w with probability ps(,)s ()
independently, where 0 < p_; < p1; < 1. To ease notation, we often write p for p4; and p_ for p_y,
and handle subscripts similarly for other parameters.

Given the random graph G (but not the planted bisection o), the task is to find a minimum bisection
of G, i.e., to partition the vertices into two disjoint sets S, 8 = [n] \ S whose sizes satisfy | |S|—[S| | <1
such that the number of S-S-edges is minimum. The planted bisection model has been employed to gauge
algorithms based on spectral, semidefinite programming, flow and local search techniques, to name but a
few [5, 6,7, 8,9, 12, 15, 16, 17, 26, 27, 31, 33, 35].

Remarkably, for a long time the algorithm with the widest range of n, p+ for which a minimum
bisection can be found efficiently was one of the earliest ones, namely Boppana’s spectral algorithm [6].!

It succeeds if
n(py —p-)>cy/npylnn

for a certain constant ¢ > 0. Under this assumption the planted bisection is minimum w. h. p. (with high
probability, meaning with probability tending to one as n — o). In fact, recently the critical value ¢* > 0
for which this statement is true was identified explicitly [1, 38]. In particular, for

n(p+ —p-)>c*/npiInn

the minimum bisection width simply equals (1/4 +o0(1))n*p_ w.h.p.

Butif n(py — p—) < ¢*/np; Inn, then the minimum bisection width will be strictly smaller than the
width of the planted bisection w. h. p. Yet there is another spectral algorithm [9] that finds a minimum
bisection w. h. p. under the weaker assumption that

n(py—p-) >cy/npyIn(np,), (1.1)

IBoppana’s paper, which only appeared in conference proceedings, did not contain the proof of an important statement about
the spectrum of the adjacency matrix. A similar result could, however, be proved along the lines of the work of Friedman, Kahn
and Szemerédi [20]; see also [19, 44].
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for a certain constant ¢ > 0, and even certifies the optimality of its solution. However, [9] does not answer
what is arguably the most immediate question: what is the fypical value of the minimum bisection width
bis(G)?

In this paper we derive the value to which the (suitably scaled) minimum bisection width converges
in probability (Theorem 1.1). We confine ourselves to the case that (n/2)p+ = d remain fixed as n — eo.
Hence, the random graph G has bounded average degree. This is arguably the most interesting case
because the discrepancy between the planted and the minimum bisection gets larger as the graphs get
sparser. In fact, it is easy to see that in the case of fixed (n/2)p+ = d4 the difference between the planted
and the minimum bisection width is ®(n) as the planted bisection is not even locally optimal w. h. p.

Although we build upon some of the insights from [9], it seems difficult to prove our main result by
tracing the fairly complicated algorithm from that paper. Instead, our main tool is an elegant message
passing algorithm called Warning Propagation that plays an important role in the study of random
constraint satisfaction problems via ideas from statistical physics [36]. Running Warning Propagation on
G naturally corresponds to a fixed-point problem on the 2-simplex, and the minimum bisection width can
be cast as a function of the fixed point.

1.2 The main result

To state the fixed-point problem, we consider the functions

-1 ifx< -1,
YRR, x—qx if —1<x<1,
1 ifx>1,

and

V:R—R, x+— {_1 %fxg—l,

1 ifx>—1.
Let P({—1,0,1}) be the set of probability measures on {—1,0, 1}. Clearly, we can identify P({—1,0,1})
with the set of all maps p: {—1,0,1} — [0, 1] such that p(—1)+ p(0) + p(1) = 1, i.e., the 2-simplex. For
a {—1,0,1}-valued random variable Z we denote by £(Z) € P({—1,0,1}) the distribution of Z. Given
p €P({-1,0,1}), let (n,;)i>1 be a family of i.i.d. {—1,0, 1}-valued random variables with distribution
p. Moreover, let 7. = Po(d..) be Poisson variables that are independent of each other and of the 7, ;. Let

Y+ Y+t7-
Zpd, d = Z Np,i— Z Mp,i (1.2)
i=1 i=Yp+1
and define a map
(‘Td%df T({_lvoal})_)fp({_luo’l})a (13)

P=L(W(Zpa,a))
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that maps p € P({—1,0,1}) to the distribution of ¥(Z, 4, 4 ). Further, with (1,,;);>1 and ¥ as before,
let

O, a_: TP({—I,O, 1}) — R,

1 Y+ Y+ +Y-
p'—>§E Zl{nl’»i:_ Zpd,.d }+ Z l{npl— Zpd, d )}
i=1 i=y; 41

Moreover, let us call p € P({—1,0,1}) skewed if p(1) > 1—d;'°.

Theorem 1.1. There exists a constant ¢ > 0 such that for any dy > 0 satisfying

d+22 and d+—d,Zc\/d+lnd+
the map T4, 4 has a unique skewed fixed point p* and n~'bis(G) converges in probability to ®4, 4 (p*).

Note that Ty, 4 may have further fixed points besides p* for example the Dirac measure (0, 1,0), but
p* is the only fixed point which is skewed. We also note that the condition d; > 2 is not optimised—any
constant larger than 1 would do as a lower bound, but then in any case the condition d > 2 follows from
the lower bound on d; —d_ for sufficiently large c.

In the following sections we will use that the assumptions of Theorem 1.1 allow us to assume that
also d is sufficiently large.

1.3 Further related work

Determining the minimum bisection width of a graph is NP-hard [21] and there is evidence that the
problem does not even admit a PTAS [30]. On the positive side, it is possible to approximate the minimum
bisection width within a factor of O(Inn) for graphs on n vertices in polynomial time [42].

The planted bisection model has been studied in statistics under the name ‘“stochastic block
model” [23]. However, in the context of statistical inference the aim is to recover the planted parti-
tion o as closely as possible given G rather than to determine the minimum bisection width. Recently
there has been a lot of progress, much of it inspired by non-rigorous work [13], on the statistical inference
problem. The current status of the problem is that matching upper and lower bounds are known for the
values of d+ for which it is possible to obtain a partition that is non-trivially correlated with o [34, 37, 40].
Furthermore, there are algorithms that recover a best possible approximation to ¢ under certain conditions
on d+ [1, 39, 38]. But since our objective is different, the methods employed in the present paper are
somewhat different and, indeed, rather simpler.

Finally, there has been recent progress on determining the minimum bisection width on the Erdds-
Rényi random graph. Although its precise asymptotics remain unknown in the case of bounded average
degrees d, it was proved in [14] that the main correction term corresponds to the “Parisi formula” in the
Sherrington-Kirkpartrick model [43]. Additionally, regarding the case of very sparse random graphs (i. e.,
with constant average degree), there is a sharp threshold (at np = In4) for the minimum bisection width
to be linear in n [32].

Generally speaking, the approach that we pursue is somewhat related to the notion of “local weak
convergence” of graph sequences as it was used in [2]. More specifically, we are going to argue that
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the minimum bisection width of G is governed by the “limiting local structure” of the graph, which is
a two-type Galton—Watson tree. The fixed-point problem in Theorem 1.1 mirrors the execution of a
message passing algorithm on the Galton—Watson tree. The study of this fixed-point problem, for which
we use the contraction method [41], is the key technical ingredient of our proof. We believe that this
strategy provides an elegant framework for tackling many other problems in the theory of random graphs
as well. In fact, in a recent paper [10] we combined Warning Propagation with a fixed point analysis on
Galton—Watson trees to the k-core problem. A similar approach was used in [24] in the context of random
constraint satisfaction problems. Further, in [4] Warning Propagation was applied to the random graph
coloring problem.

2  QOutline

From here on we keep the notation and the assumptions of Theorem 1.1. In particular, we assume that
d, —d_ > cv/d, Ind, foralarge enough constant ¢ > 0 and that d.. remain fixed as n — . Furthermore
we assume that d is bounded from below by a large enough constant. Throughout the paper all graphs
will be locally finite and of countable size.

Three main insights enable the proof of Theorem 1.1. The first one, which we borrow from [9], is that
w. h.p. G features a fairly large set C of vertices such that for any two optimal bisections 7j, T, of G
(i.e., maps 71, T2 : V(G) — {£1}), we either have 7;(v) = 7»(v) for all v € € or 71 (v) = —12(v) for all
v € € (Lemma 2.1). In the language of random constraint satisfaction problems, the vertices in C are
“frozen.” While there remain Q(n) unfrozen vertices, the subgraph that they induce is subcritical, i. e., all
components are of size O(Inn) and indeed most are of bounded size.

The second main ingredient is an efficient message passing algorithm called Warning Propagation,
(cf. [36, Chapter 19]). We will show that a bounded number of Warning Propagation iterations suffice
to arrange almost all of the unfrozen vertices optimally (i. e., to assign almost all of the vertices to two
classes such that there is a minimum bisection respecting this assignment) and thus to obtain a very good
approximation to the minimum bisection w. h. p. (Proposition 2.2). This insight reduces our task to tracing
Warning Propagation for a bounded number of rounds.

This last problem can be solved by studying Warning Propagation on a suitable Galton—Watson tree,
because G only contains a negligible number of short cycles w. h. p. (Lemma 2.3). Thus, the analysis of
Warning Propagation on the random tree is the third main ingredient of the proof. This task will turn out
to be equivalent to studying the fixed-point problem from Section 1.2 (Proposition 2.5). We proceed to
outline the three main components of the proof.

2.1 The core

Given a vertex u of a graph G let dgu denote the neighbourhood of u in G. We sometimes omit the
subscript G when the graph is clear from the context. More particularly, in the random graph G, let d.u
denote the set of all neighbours w of u in G with 6(w)o(u) = £1. Following [9], we define C as the
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largest subset U C [n] such that
’\8iu|—di’ 52\/d+lnd+ and  |9u\U| <100 forallueU. @.1)

Clearly, the set C, which we call the core, is uniquely defined because any union of sets U that satisfy (2.1)
also has the property. Let o¢ : € — {£1}, vi— o(v) be the restriction of the “planted assignment” o to
C.

Furthermore, for a graph G, aset U C V(G) andamap o : U — {—1,1} we let

1—1(v)t(w)

cut(G,0) = min{ >

{v,w}eE(G)

7:V(G) — {£1} satisfies T(v) = oy (v) forall v € U}.

Note that U does not appear explicitly in the notation cut(G, o) despite being integral to the definition—it
is however implicit in the notation since U is the domain of ©.

In words, cut(G, o) is the smallest number of edges in a cut of G that separates the vertices in
UNo~!'(—1) from those in UN o~ !(1). In particular, cut(G, o¢) is the smallest cut of G that separates
the vertices in the core C that are frozen to —1 from those that are frozen to 1. Finally, for any vertex v
we define a set C, = C,(G, o) of vertices via the following process.

C1 Letel) = {v}uav.
C2 Inductively, let G‘(,’H) = e&’) U Uue@&”\e du and let C, = ;> Gg).
Lemma 2.1 ([9], Proposition 19 and Section 3.6). We have
bis(G) = cut(G,0¢) +O(1)  and  |C >n(1 —d;'?)
w. h. p. Furthermore, for any € > 0 there exists @ > 0 such that w. h. p.

Y lef-1{[e)] > w} <en.

vE(n]

2.2 Warning Propagation

To calculate cut(G,c¢) we adopt the Warning Propagation (“WP”) message passing algorithm.? Let us
first introduce WP for a generic graph G = (V(G),E(G)) andamap o : U C V(G) — {—1,1}. Ateach
time # > 0, WP sends a “message” ., (t | G,0) € {—1,0,1} from v to w for any edge {v,w} € E(G).
The messages are directed objects, i.e., Uy, (¢ | G,0) and W, (f | G, ) may differ. They are defined
inductively by

o(v) ifveU,

0 otherwise,

ﬂv—)w(o ’ G, G) = {

2 A discussion of Warning Propagation in the context of the “cavity method” from statistical physics can be found in [36].
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and fort >0

P—sw(t+1]G,0):= l//( Y bt | G,6)>- (2.2)

ucdv\w

Again, U is implicit in the notation W, (¢ | G, o) since U is the domain of ©.

Thus, the WP messages are initialised according to o : U — {—1, 1}. Subsequently, v sends message
+1 to wif it receives more +1 than F1 messages from its neighbours u # w. If there is a tie, v sends out
0. Finally, for ¢ > 0 define

W(1]G,0) =Y tyw(r]|G,0).
wedv

The intuition is that the message u,—,,, which v sends to w indicates which class v is most likely to be
in based on the current local information it receives from its other neighbours. To minimise the cut, we
would like to place v into the class in which most of its neighbours lie. The initialisation is given by the
set U, which we will choose to be the core.

Proposition 2.2. For any € > 0 there exists t) = to(€,d+,d_) such that for all t > to w. h. p.

ct(G,06) 5 X X Wt (1] G,0) =~ (1 (t] G,0))} | <en.

ve(n|wedv

We defer the proof of Proposition 2.2 to Section 3.

2.3 The local structure

Proposition 2.2 shows that w. h. p. in order to approximate cut(G, ce) up to a small error of €n we merely
need to run WP for a number £y of rounds that is bounded in terms of €. The upshot is that the WP
messages Uy, (f | G, o) that are required to figure out the minimum bisection width are determined by
the local structure of G. We show that the local structure of G “converges to” a suitable Galton—Watson
tree. For this purpose, for simplicity we always say that the number of potential neighbours of any vertex
in each class is n/2. This ignores the fact that if n is odd the classes do not have quite this size and the
fact that a vertex cannot be adjacent to itself. However, ignoring these difficulties will not affect our
calculations in any significant way.

Our task boils down to studying WP on that Galton—Watson tree. Specifically, let 7 =T, 4 be the
Galton—Watson tree with two types +1, —1 and offspring matrix

Po(d;) Po(d-)
<Po(d+) Po(d+)>' 23)

Hence, a vertex of type 1 spawns Po(d ) vertices of type +1 and independently Po(d_ ) vertices of type
F1. Moreover, the type of the root vertex rr is chosen uniformly at random. Let t =74, 4 : V(T) —
{£1} assign each vertex of T its type.

The random graph (G, o) “converges to” (T, 7) in the following sense. For two triples (G,r,0),
(G',r',0’) of graphs G, G, root vertices r € V(G), ¥’ € V(G') and maps 6 : V(G) — {1}, 6’ : V(G') —
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{1} we write (G,r,0) = (G',r,0’) if there is a graph isomorphism ¢ : G — G’ such that ¢(r) = ' and
0 = ¢’ o @. Further, we denote by d'(G,r,0) the rooted graph obtained from (G, r, o) by deleting all
vertices at distance greater than ¢ from r together with the restriction of o to this subgraph. The following
lemma characterises the local structure of (G, o).

Lemma 2.3. Lett > 0 be an integer and let T be any tree with root r and map t©: V(T ) — {£1}. Then

- Z 1{0"(G,v,0) 29" (T,r,1)} == P[o(T,rr,7) = (T,r,v)] in probability.

Ve[n]

Furthermore, w. h. p. G does not contain more than Inn vertices v such that d'(G,v, o) contains a cycle.

Proof. Given a tree T with root r and map 7: V(T) — {£1}, let

X, =X,(T,r,7): Zl{avao =~ 9'(T,r,7)}.

e
Similarly, for a set C of isomorphism classes of rooted {£1}-marked trees let
g =q(C):=P [8’(T,rT,7:) c C] )
The proof proceeds by induction on ¢. If t = 0, pick a vertex v € [n] uniformly at random, then
Xo=P,(6()=1())=1/2 and  po="Pr(c(rr)=1(r)=1/2

for any 7(r) € {£1}. To proceed from ¢ to ¢ + 1, let d denote the number of children vy,...,v; of rin
T. Foreachi=1,...,d, let T; denote the tree rooted at v; in the forest obtained from 7" by removing
rand let 7; : V(T;) — {%1} denote the restriction of T to the vertex set of 7;. Finally, let Cy,...,C;
for some d < d denote the distinct isomorphism classes among {d'(T;,v;,7;) : i = 1,...,d}, and let

= |{i: d'(T;,vi,7i) € Cj}|. Let v € [n] be an arbitrary vertex in G. Our aim is to determine the
probability of the event {d""!(G,v,0) = d'T!(T,r,7)}. Therefore, we think of G as being created in
three rounds. First, partition [r] into two classes. Second, randomly insert edges between vertices in
[n] \ {v} according to their planted sign. Finally, reveal the neighbours of v. For the above event to
happen, v must have d neighbours in G. Since |d1v| are independent binomially distributed random
variables with parameters n/2 and p and because (n/2)p+ = di, we may approximate |d1v| with a
Poisson distribution, and v has degree d with probability

(ds +d-)?

_— 1
dlexp(dy+d-) +oll),

where the error term is bounded by (d +d_)/n by Le Cam’s inequality. Conditioned on v having degree
d, by induction v is adjacent to precisely c; vertices with neighbourhood isomorphic to 9" (7;,v;, ;) € C;

with probability
< > _d ) :
I I 0
cr-.-¢j) ; 1q; !
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The number of cycles of length ¢ < 27+ 3 in G is stochastically bounded by the number of such cycles in
G(n,d /n) (the Erd6s-Rényi graph). For each ¢, this number tends in distribution to a Poisson variable
with bounded mean (see, e. g., Theorem 3.19 in [25]) and so the total number of such cycles is bounded
w. h. p. Thus all the pairwise distances (in G — v) between neighbours of v are at least 27 4+ 1 w. h. p. (and
in particular this proves the second part of the lemma). Therefore

dy+d ) d d
Eg[Xi+1] = d!ix;(—; +)d) <c1 N .ca7> jI;IICIt(Cj) +o(1).

By definition of 7', we obtain E[X,1 ] = ¢,+1 +0(1). To apply Chebyshev’s inequality, it remains to

determine E[X? ,]. Let v,w € [n] be two randomly choosen vertices. Then w. h. p. v and w have distance

at least 2¢ + 3 in G, conditioned on which 0’*1(G,v, ) and 9'"!(G,w, o) are independent. Therefore
we obtain

Py (8t+1 (G,v,0) = 8’+1(T, nT)A at“(G, w,0) = 8t+l(T, T, ’L'))
=P, (0" (G,v,0) 29" (T,r,7)) P, (3" (G,w,0) 2 9" (T,r,7)) +0(1),

and finally
Eg[X? ] =Eg [P, (" (G,v,0) 2 " (T,r,7)) P, (9" (G,w,0) 2 9" (T,1,7))]
+1Bg[X 1] +o(1)
=Eg[X,11])* +o(1).

The first assertion follows from Chebyshev’s inequality. O

2.4 The fixed point

Let (7,r,7) be a rooted tree together with a map 7 : V(T) — {£1}. Then for any pair v,w of adjacent
vertices we have the WP messages U, (¢ | T,7), t > 0, as defined in (2.2). Since we are going to be
particularly interested in the messages directed towards the root, we introduce the following notation.
Given the root r, any vertex v # r of T has a unique parent vertex u (the neighbour of v on the unique
path from v to r). Initially, let

;uvT(O | Tr, T) = T(V) 2.4)

and define
Mo (t | T,1,T) = Wy (t | T, 7T) (2.5)
for ¢ > 0. In addition, set (0 | T,r,7) = 7(r) and let

vear

Ur(t+1|T,rn1)=y < Y wn (e T,r, T)) (t >0) (2.6)

be the message that r would send to its parent if there was one.
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For p = (p(—1),p(0),p(1)) € P({—1,0,1}) we let p = (p(1),p(0), p(—1)). Recalling the map

T=T4,4 : P{~1,0,1}) = P({~1,0,1}),
p = T(p(=1),p(0),p(1)) = L(¥(Zpa,.a )

defined by (1.3) in Section 1.2 and writing J* for its -fold iteration, we observe the following.
Lemma 24. Let p, :=T77(0,0,1).

1. Given that ©(rp) = +1, the message W+(t | T,rr,t) has distribution p;.

2. Given that ©(rr) = —1, the message U,,+(t | T,rr, ) has distribution p.

Proof. The proof is by induction on 7. In the case ¢ = 0 the assertion holds because u,.+(0 | T,rr,7) =
7(rr). Now assume that the assertion holds for ¢. To prove it for z + 1, let C1. be the set of all children v
of rr with 7(rr)7(v) = £1. By construction, |C4 | has distribution Po(d+). Furthermore, let (7',v,7,)
signify the subtree pending on a child v of rr. Because T is a Galton—Watson tree, the random subtrees
T, are mutually independent. Moreover, each T, is distributed as a Galton—Watson tree with offspring
matrix (2.3) and a root vertex of type +7(rr) for each v € C1. Therefore, by induction, the message
Wy (t | Ty, v,T,) has distribution p; if T(v) =1 and p; if 7(v) = —1. As a consequence,

nurTT(t_'_l ‘ T,rr,7):=y < Z ‘Llw(t ‘ Ty,v, 7))+ Z -uVT(t ‘ Ty,v, TV))

veCy veC_

has distribution p,;; if 7(rr) = 1 and p,1; otherwise. O

Lemma 2.4 shows that the operator T mimics WP on the Galton—Watson tree (7', rr, 7). Hence, to
understand the behaviour of WP after a large enough number of iterations we need to investigate the fixed
point to which J7(0,0, 1) converges as t — oo. In Section 4 we will establish the following.

Proposition 2.5. The operator T has a unique skewed fixed point p* and lim,_,., T (0,0, 1) = p*.

Proof of Theorem 1.1. Consider the random variables

X, = %bis(G),
7= L L 1ealt6.0)= it G0}

ve[n] wedgy

Then Lemma 2.1 and Proposition 2.2 imply that for any € > 0,

lim lim P ||, — v,’| > €| =0, @.7)

{—$00 p—300
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By Definition (2.2), t,,—,(t | G,0) and u,(t | G, o) are both determined by d(;v and the initialisation
Hu—sw(0| G,0) for all u,w € dtv, {u,w} € E(G). Since (2.5) and (2.6) match the recursive definition (2.2)
of Wy—(t | G,0) and p,(t | G,0), Lemma 2.3 implies that for any fixed r > 0 (as n tends to infinity),

[ee] 1
Yn(t) nRe (). EE Z l{ﬂwT(t | Tyrr, ) = =W, (1| T,I’T,T))} in probability.
WG&T}’T

(2.8)

Now let p* denote the unique skewed fixed point of T guaranteed by Proposition 2.5. Since each child of
rr can be considered a root of an independent instance of 7' to which we can apply Lemma 2.4, we obtain
that given (7(w)),ca,, the sequence (Uy(t | T,rr,T)),ea,, converges to a sequence of independent
random variables (1,,),.cg,, With distribution p* (if 7(w) = 1) and p* (if T(w) = —1). By definition
Ur (¢ | T, rr,T) converges to

Y met+ Y m

wedrr,T(w)=1 wedrr,T(w)=—1

Considering the offspring distributions of 77 in both cases, i.e., 7(rr) = £1, we obtain from ¢y, 4 (p) =
¢4, 4 (p) forall p e P({—1,0,1}) that

. (1) — %
lim " = @q, 4 (p)- (2.9)
Finally, combining (2.7)—(2.9) completes the proof. O

3 Proof of Proposition 2.2
Lemma 3.1. Ifv € Cand w € dgv, then l,,(t | G,0) = 6 (v) = Uy—w(t | G,0¢) forall t > 0.

Proof. We proceed by induction on ¢. For ¢ = 0 the assertion is immediate from the initialisation of the
messages. To go from z to £ + 1, consider v € € and w € dgv. We may assume without loss of generality
that o(v) = 1. By the definition of the WP message,

ow(t+1[G,0) =y ( Y (]G, G)) =y (Sy+S_+S)) (3.1
ucdgv\{w}
where

S+ = Z .uu—>v<t ’ G,G),
ueCno~1(+1)Ndgv\{w}

sS= Y met]Go),
ueCno=1(=1)Ndgv\{w}

So = Y  w(|Go).
ucdgv\(CU{w})
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Now, (2.1) ensures that

S+2d+—%\/m, S,z—d,—%/dgn@, \So\§100§§\/d+lnd+, (3.2)

provided that the constant ¢ > 0 is chosen large enough. Combining (3.1) and (3.2), we see that
S+ +S_+So>1andthus y,,,(t+1| G,0) = 1. The same argument works for p, ,,,(t + 1 | G,0¢) =
1. O

Let G, denote the subgraph of G induced on €,. To prove Proposition 2.2, fix s > 0 large enough.
Let 8 = 8(s) be the set of all vertices such that either |C,| > /s or G, is cyclic. Then Lemma 2.1 (with
slightly smaller €) and Lemma 2.3 imply that |S| < en w. h. p. For the rest of this section, let v ¢ 8 be
fixed.

For w € C, \ {v} we let wy, be the neighbour of w on the path from w to v. We define G,,_, as the
component of w in the graph obtained from G, by removing the edge {w,wy, }. The vertex set of G,,_,,
will be denoted by C,,_,,. Further, A,,_,, is the maximum distance between w and any other vertex in
G,—y. Additionally, &, is the maximum distance between v and any other vertex in G,. Finally, let
0,:C = {*l},w—o(w)andletoe,: C,NC — {£1}, w— ce(w).

Lemma 3.2.
(1) Foranyw € C,\ {v} and any t > h,,_,, we have

Hy—wy, (t|G,0)= .uw%ww(hw%v+1 |G,0) = /’LWHWTV(I‘ | G,0¢).

(2) Foranyt > h, we have p,(t | G,0) = u,(h,+ 1| G,0) = u,(t | G,0¢).
Proof. The proof of (1) proceeds by induction on 4,,_,,. The construction C1-C2 of C, in Section 2.1

ensures that any w € €, with h,,_,, = 0 either belongs to € or has no neighbour besides w4,. Hence for
the first case the assumption follows from Lemma 3.1. If dgw \ {w4, } = @ we obtain that

.uW%WTu (t | G7 G) = :uWHWTV (t | Gv GC) =0

for all > 1 by the definition of the WP messages. Now, assume that A,,_,, > 0 and let # > h,,_,,. Then
all neighbours u # wy, of w in G,,_,, satisfy h,_,, < hy,_,,. Thus, by induction

.uw—>wT\, (t ‘ G,O') =y Z .uu—>w(Z —1 ‘ G,G)
u€dgw\{wy,}

=V Z W (Pusy + 1] G,0) | = sy, (Byv +1] G, 0).
uedow\{wy, }

An analogous argument applies to f, ., (f | G, 0¢). The proof of (2) is similar. O
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For each vertex w € €y, w # v, let Wy, = Wy, (s | G,0). Further, let u;, = p,(s | G,0). In
addition, for z € {£1} let

o
o CuyN({whue) — {£1}, N itu v.v,
o(u) otherwise.

In words, o%,_,, freezes w to z and all other u € C,,_,, that belong to the core to & (u). Analogously, let

o
ol C,N({vIue) - {£1}, um i’ nu=r
o(u) otherwise.

Lemma 3.3. Suppose that u € C,\ {v} is such that h,_,, > 1.
(1) Ifz=p, ,, € {—1,1}, then
Ut(Gyosy, 0% ,,) < CUt(Gysyy O15,,). 3.3)

Similarly, if z = y(uy) € {—1,1}, then

cut(G,,0%) < cut(G,,0, 7). (3.4)
(2) Ifu;,, =0, then
cut(G, sy, 0,71 ) = cut(G, sy, 0, L) (3.5)
Similarly, if u; =0, then
cut(G,,o; ") = cut(G,, 5, 1). (3.6)

Proof. We prove (3.3) and (3.5) by induction on A,_,,. If h,_,, = 1 then we have that all neighbours
w € de, ,,u of uwith u;_,, # 0 are in C, i.e., fixed under o_,,. Since Cy, = dgu \ {up, } U {u}, we
obtain

Cut(euﬁva G;iv) - Cut(euﬁv? Gi—w) = Z :u:/—w (37)
wedgu\{ur,}

by definition of z. By the induction hypothesis and because G,_,, is a tree (as v € 8) we have that (3.7)
holds for A, > 1 as well. A similar argument yields (3.4) and (3.6). ]

Now, let U, be the set of all w € €, such that u;_,,, # 0. Furthermore, let

P) ifw=v,

, (3.8)
Wy,  otherwise.

op U, U{v} = {—1,+1}, wr—>{

Thus, o4, sets all w € C,NC\ {v} to their planted sign and all w € U, \ € to u;_, . Moreover, 04, sets v
to w(uy) if y(u)) # 0 and to 1 if there is a tie.
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Corollary 3.4. We have cut(G,,o¢) = cut(G,,04,).

Proof. This is immediate from Lemma 3.3. O

Hence, in order to determine an optimal cut of G, we merely need to figure out the assignment of the
vertices in C, \ ({v}UU,). Suppose that G?V : €, — {£1} is an optimal extension of o4, to a cut of G,,
1.e.,

1 * *
cut(Gy, o) = Y. E(I—GTV(“)GTV(W))-
{u,w}€E(G,)

Corollary 3.5. It holds that

Y S0-oiWeh) = ¥ 1, =9 w).

WEGV WEIGV

Proof. Part (2) of Lemma 3.3 implies that 63, (v)0},(w) = 1 for all w € dgv such that uy,_,, = 0. The
claim follows from the definition of 0'% and (3.8). ]

Proof of Proposition 2.2. Given € > 0 choose 6 = 0(¢€,d,d_) sufficiently small and s = s(€,8,d,d_) >
0 sufficiently large. In particular, pick s large enough so that

P(|8| > 6n) < &. (3.9)

Provided that § is sufficiently small, the Chernoff bound implies that for large n

18| < 5n> <e. (3.10)

1
P <2 Y |9gv| > en

ves

Now, suppose that 7, is an optimal extension of o¢ to a cut of G and let v ¢ 8. Then using the
definition of C,, Corollary 3.4 implies that

Y, (1—op(oe(w) = ), (1-05,(v)a7,(w)).

wEdGV wEIGV

Therefore, we obtain

|

The assertion follows from Lemma 3.2 for t > s. O

at(G,o¢)~ 3 ¥ ¥ (1-03,(1)0},(w)

V€S weEdgy

1
28n> g[@(z):yacw ZSn) <2e.

veS
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4 Proof of Proposition 2.5

We continue to denote the set of probability measures on X C R¥ by P(X). For an X-valued random
variable X we denote by £(X) € P(X) the distribution of X. Furthermore, if p,q € P(X), then we write
P,,4(X) to denote the set of all probability measures pt on X x X such that the marginal distribution of
the first component coincides with p and the marginal distribution of the second component coincides
with ¢. The space P({—1,0,1}) is complete with respect to the L;-Wasserstein metric that is defined by

(i(p,q) :=inf{E|X —Y|: X,Y are random variables with £(X,Y) € P, ,({—1,0,1})}.

In words, the infimum of E|X — Y| is over all couplings (X,Y) of the distributions p,q. Such a coupling
(X,Y) is optimal if ¢1(p,q) = E|X —Y/|. Finally, let P*({—1,0,1}) be the set of all skewed probability
measures on {—1,0, 1}, thatis, P*({—1,0,1}) is the set of all p = (p(—1),p(0),p(1)) € P({—1,0,1})
satisfying p(1) > 1 —d;'". Being a closed subset of P({—1,0,1}), P*({—1,0,1}) is complete with
respect to £y (-, ).

As in the definition (1.2)-(1.3) of the operator T = T4, 4 for p € P({—1,0,1}) welet (1,;)i>1 be a
family of independent random variables with distribution p. Further, let . = Po(d.) be independent of
each other and of the (7,,;);>1. We introduce the shorthands

Y+ Y+ +Y-
Zp=2Zpd.d_ Zp+ =Y Mpis Zp—= ), Mpi
i=1 i=y; +1

so that

Z,=Zp—Zp_.
Also set A = ¢y/d Ind and recall that ¢ > 0 is a constant that we assume to be sufficiently large.
Lemma 4.1. The operator T maps P*({—1,0,1}) into itself.

Proof. Suppose that p € P({—1,0,1}) is skewed. Then
A—1 A—1
P(zp<1)gp<zp7+gd+—2>+P<zp,_zd_+2>. 4.1)

Since |1, ;| < 1 for all i, we can bound the second summand from above by invoking the Chernoff bound
on a binomial approximation of the Poisson distribution. Using that d_ + c\/d; Ind; < d. we obtain

1 2 1
p<y_zd_+§¢m_2> <d.T < ;" “2)

provided c is large enough.
To bound the other summand from above we use that (1,,;);>1 is a sequence of independent skewed
random variables, whence by the Chernoff bound

A—1
P(Z,,Hr §d+—2>

-1
<P(ly —dy| >7L/8)+IP><ZP7 <d _2’2

Y+2d+—k/8>

1 2
< gd;m +P [Bin(d; —A/8,1-d; ") <d. —1/7] < gd;m, (4.3)
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provided that c is sufficiently large. Combining (4.1)—(4.3) completes the proof. g
Lemma 4.2. The operator T is strictly {1-contracting on P*({—1,0,1}).

Proof. Let p,q € P*({—1,0,1}). We aim to show that ¢, (T(p),T(q)) < (1/2)£1(p,q). To this end, we
let (Np.,i,Mg,i)i>1 be a family of random variables such that the (1), ;);>1 are independent with distribution
p and the (7,,);>1 are independent with distribution ¢ but the pair (1, ;,14,;) is an optimal coupling for
every i. Then by the definition of ¢, (-, -),

6(T(p),T(q) <E|w(Z,) — w(Z,)]. 4.4)

To estimate the r. h.s., let 7}, ; = 1{n,,; = 1} and 7}, ; = 1{n,; = 1}. Further, let §; be the c-algebra gen-
erated by 7, ], and let § be the c-algebra generated by 7y, 7 and the random variables (7, i, flg.i)i>1-
Additionally, let Y = ¥4 + 7— and consider the three events

Y
Ay = {Zﬁp,iﬁq,iZ?’— 10}7 Ay:={y>2d.}, Az = {y, —y- <20}.
=1

We are going to bound |y(Z,) — w(Z,)| on A := A; \ (A, UA3), C:= A1 UA,UA3, Ay and A3\ Ay
separately. The bound on the first event is immediate: if A occurs, then y(Z,) = y(Z,) = 1 with certainty.
Hence,

Elly(Zy) —w(Z)[ 1a] = 0. (4.5)
Let us turn to the second event C. Because the pairs (1,,;,74.)i>1 are mutually independent, we find
E[|np,i_nq,i| ‘ 13"] :E[|np,i_nq,i| | Sl] foralli>1. (46)

Clearly, if 77, ;74 = 1, then 11, ; — 14.; = 0. Consequently,

E[Mpi—Ngil _ Elnp1 —ng,1
Elnpi—Mgil |§i] € o 5w = o - 4.7
an e ‘ | ] ]P)[np,inq,i = O] IP)[Tlp,lrlq,l = O]

Since the events A1,A»,A3 are F-measurable and because A, ensures that y < 2d.., (4.6) and (4.7) yield

243 B[Np1 = M|

Ellw(Z,) —w(Z)| | §]lc < L (4.8)
lw(Zp) —w(Z)] | S]1c Bl s = 0
Further, because the pairs (1, ;,74,i)i>1 are independent and because p, g are skewed,
. = 10
P(C) <P y<2dy,) Mpiflgi < ¥—10 | < (2d:P(fip1fl41 =0)) . 4.9)
i=1

Combining (4.8) and (4.9), we obtain

E[E(lw(Z,) — w(Z)| 18] 1c] < (2d4)" P (71711 = 0) Elnp1 — g (4.10)
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Since p, g are skewed, we furthermore obtain IP (7], 17)y,1 = 0) < 2d;10. Therefore

E[1(Zp) — w(Z,)1e| =E [E(1w(Z,) - v(Z,)| | §) Ly |
< 220d;79E|np,1 — Mgl

With respect to A,, the triangle inequality yields
Elly(Z,) = w(Zy)[1a,] < 2E[Mp1 = Ng.1| - E[¥l4,]- (4.11)

Further, since ¥ = Po(d +d_), the Chernoff bound entails that E[y14,] < d ' if the constant c is chosen
large enough. Combining this estimate with (4.11), we get

Elly(Zy) — w(Zy)|14,] < 2dllE|ﬂp,1 — Mgl (4.12)
Finally, on A3 \ A, we have
E[ly(Z,) — w(Zy)[1a3\4,] < 4d E[np1 — Mg | Py — - <20]. (4.13)

Since ¥+ = Po(dx) and d; —d_ > A, the Chernoff bound yields P [y, —y- < 20] < d;?, if c is large
enough. Hence, (4.13) implies

Ellw(Zp) = w(Zy)[1aa,] < 4d7 BNy =gl (4.14)
Finally, the assertion follows from (4.4), (4.5), (4.10), (4.12) and (4.14). O
Proof of Proposition 2.5. The assertion follows from Lemmas 4.1 and 4.2 and the Banach fixed point
theorem. O
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