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Abstract: The area of property testing tries to design algorithms that can efficiently handle
very large amounts of data: given a large object that either has a certain property or is
somehow “far” from having that property, a tester should efficiently distinguish between
these two cases. In this survey we describe recent results obtained for quantum property
testing. This area naturally falls into three parts. First, we may consider quantum testers
for properties of classical objects. We survey the main examples known where quantum
testers can be much (sometimes exponentially) more efficient than classical testers. Second,
we may consider classical testers of quantum objects. These arise for instance when one is
trying to determine if quantum states or operations do what they are supposed to do, based
only on classical input-output behavior. Finally, we may also consider quantum testers for
properties of quantum objects, such as states or operations. We survey known bounds on
testing various natural properties, such as whether two states are equal, whether a state is
separable, whether two operations commute, etc. We also highlight connections to other
areas of quantum information theory and mention a number of open questions.
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1 Introduction

In the last two decades, the amounts of data that need to be handled have exploded: think of the massive
amounts of data on the web, or the data warehouses of customer information collected by big companies.
In many cases algorithms need to decide whether this data has certain properties or not, without having
sufficient time to trawl through all or even most of the data. Somehow we would like to detect the
presence or absence of some global property by only making a few “local” checks. The area of property
testing aims to design algorithms that can efficiently test whether some large object has a certain property,
under the assumption that the object either has the property or is somehow “far” from having that property.
An assumption like the latter is necessary for efficient property testing: deciding the property for objects
that are “just on the boundary” typically requires looking at all or most of the object, which is exactly
what we are trying to avoid here. In general, different property testing settings can be captured by the
following “meta-definition”:

Property testing
Let X be a set of objects and d : X×X→ [0,1] be a distance measure on X. A subset P⊆ X

is called a property. An object x ∈ X is ε-far from P if d(x,y)≥ ε for all y ∈ P; x is ε-close
to P if there is a y ∈ P such that d(x,y)≤ ε .

An ε-property tester (sometimes abbreviated to ε-tester) for P is an algorithm that receives
as input either an x ∈ P or an x that is ε-far from P. In the former case, the algorithm accepts
with probability at least 2/3; in the latter case, the algorithm rejects with probability at
least 2/3.

Observe that, if an input is accepted by the property tester with high probability, then it must be ε-close
to P. This is true for all inputs, including inputs neither in P nor ε-far from P. The value of 2/3 for the
success probability is arbitrary and can equivalently be replaced with any other constant in (1/2,1) since
we can efficiently reduce the error probability by repeating the test a few times and taking the majority
outcome. We say that the tester has perfect completeness if it accepts every state in P with certainty. The
distance parameter ε is usually taken to be some positive constant. We will often just speak of a “tester,”
leaving the value of ε implicit.

Clearly, this meta-definition leaves open many choices: what type of objects to consider, what property
to test, what distance measure to use, what range of ε to allow (the larger ε , the easier it should be to
test P), and how to measure the complexity of the testing algorithm. A lot of work in classical computer
science has gone into the study of efficient testers for various properties, as well as proofs that certain
properties are not efficiently testable, see for instance [39, 76, 66, 147, 75]. Typically, X will be the set of
all strings of length N over some finite alphabet, where we think of N as being very large. The distance
will usually be normalized Hamming distance d(x,y) = |{i : xi 6= yi}|/N, though also more sophisticated
metrics such as “edit distance” have been used. The complexity of the tester is typically measured by
the number of queries it makes to entries of its input x, and a tester is deemed efficient if its number of
queries is much less than the length of the input N, say polylog(N) or even some constant independent
of N. This captures the goal that a tester is able to efficiently handle huge amounts of data. The distance
bound ε is often taken to be a small fixed constant, but in some cases it is also interesting to quantify the
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dependence of the tester’s complexity on ε as well as on N. For example, a tester whose complexity is
Θ(221/ε

) might be considered to be of little use in practice.
As an initial (very simple) example, suppose our property P= {0N} consists of only one object, the

all-zero string, and we use normalized Hamming distance. Our input x will either be in P (i. e., x = 0N)
or ε-far from P (i. e., x has at least εN 1-bits). An obvious tester would choose k indices in the string at
random, query them, and reject if and only if there is a 1 in at least one of those positions. This tester
accepts x = 0N with certainty (so it has perfect completeness), and fails to reject an input that is ε-far from
P with probability (1− ε)k. Choosing k = Θ(1/ε) gives a tester with small constant error probability,
and this number of queries can be shown to be optimal.1

In this survey paper we will be concerned with quantum property testing. There are several natural
ways in which one can generalize property testing to the quantum world:

• Quantum testing of properties of classical objects. In this setting we would like to achieve provable
quantum speed-ups over any possible classical algorithm, or to prove limitations on property testers,
even if they are allowed to be quantum. By their very nature, efficient quantum query algorithms
rely on extracting global information about the input, by querying in superposition; property testing
is thus a plausible place to find significant quantum speed-ups. A very simple example of such
a speed-up is for the above-mentioned property P = {0N}: a tester based on Grover’s search
algorithm [82] would use O(1/

√
ε) queries, in contrast to the Θ(1/ε) queries that classical testers

need.

• Classical testing of properties of quantum objects. Here we imagine we are given a black-box
device which is claimed to implement some quantum process, and we would like to test whether it
does what is claimed. However, our access to the device is classical: all we can do is feed classical
inputs to the device, and receive classical measurement outcomes.

• Quantum testing of properties of quantum objects. In this most general scenario, we are given
access to a quantum state or operation as a black box, and apply a quantum procedure to it to test
whether it has some property.

We will discuss each of these settings in turn. We usually concentrate on describing the intuition behind
prior work, without giving detailed proofs. Some of the results we present have not appeared in the
literature before; these are largely based on combining, generalizing or improving existing works. Various
open questions are pointed out throughout the survey.

A vast amount of work in quantum computing can be interpreted through the lens of property testing.
Indeed, taken to extremes, any efficient quantum algorithm for a decision problem could be seen as
an efficient property tester, and any measurement scheme that tries to learn properties of a quantum
state or channel could be seen as a quantum property tester. We therefore concentrate on covering those
algorithms which can clearly be understood as distinguishing objects with some property from those “far”
from that property, and we make no attempt to be completely comprehensive. Also, our focus is on the
computer-science aspects of the field, rather than work which primarily takes a physics perspective, such
as the study of interaction-free measurement and the flourishing field of quantum metrology. Finally, we

1Note that the complexity of a property can differ much from that of its complement. For example, P= {0,1}N\{0N} is
trivial to test if ε > 1/N: no string is ε-far from P, so we might as well accept every input without querying anything.
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do not attempt to cover the (now very extensive) field of classical testers for classical properties. For
much more on these, see the references given earlier.

1.1 Quantum testing of classical properties

In the first part of this paper we will consider quantum testing of classical properties. Again, X will
typically be the set of all strings of length N over some finite alphabet, the distance will be normalized
Hamming distance, and the complexity of both quantum and classical property testers will be measured
by the number of queries to the input x.

One of our goals is to survey examples of quantum speed-up, i. e., describe properties where the
complexity of quantum testers is substantially less than the complexity of classical testers. Most known
quantum speed-ups for testing classical properties were derived from earlier improvements in query
complexity: they rely on quantum algorithms such as those of (in chronological order) Bernstein and
Vazirani [36], Simon [156], Shor [154], Grover [82], and Ambainis [16]. In Section 2.2 we describe these
quantum property testers and the improvements they achieve over classical testers. Some of the properties
considered are very natural, and some of the improvements achieved are quite significant.

In Section 2.3 we describe some lower-bound methods for quantum property testing, i. e., methods to
show query complexity lower bounds for quantum algorithms that want to test specific properties. The
main lower bounds in this area have been obtained using the polynomial method. We also describe the
adversary method, which—when applied properly—proves optimal lower bounds. And we ask whether
the recent classical property testing lower bounds of Blais et al. [38], based on communication complexity,
can be applied to quantum testers as well.

1.2 Classical testing of quantum properties

In the second part we will consider classical testing of quantum properties. At first sight, this scenario
might make no sense—how could a classical algorithm, without the ability to perform any quantum
operations, be able to test quantum objects? But suppose someone gives us a quantum state and claims it
is an EPR-pair. Or someone builds a quantum device to implement a Hadamard gate, or to measure in a
specific basis. How can we test that these quantum objects conform to their specifications? These are
questions often faced for instance by experimentalists who try to check that their quantum operations
work as intended, or by parties who run quantum cryptographic hardware provided by an untrusted
supplier. We do not want to assume here that we already have the ability to implement some other
quantum operations reliably, because that would lead to an infinite regress: how did we establish that
those other quantum objects are reliable? Accordingly, we somehow would like to test the given quantum
object while only trusting our classical devices. Of course, in order to test a quantum object there has to
be at least some interaction with the quantum object-to-be-tested. In the testers we consider, the only
quantum involvement is with that object itself in a black-box fashion (whence the name “self-testing”):
we can only observe its classical input-output behavior, but not its inner quantum workings.

This notion of quantum self-testing was introduced by Mayers and Yao [123, 124], who described a
procedure to test photon sources that are supposed to produce EPR-pairs. Since then quite a lot of work
has been done on self-testing. We focus on two areas for self-testing: in Section 3.1 we describe self-
testing of universal sets of quantum gates gates and in Section 3.2 we describe the self-testing of protocols
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for two or more parties, focusing on protocols for the so-called CHSH game. Self-testing of protocols has
found many applications in the fast-growing area of device-independent quantum cryptography, where
parties want to run cryptographic protocols for things like key distribution or randomness generation,
using quantum states or apparatuses (photon sources, measuring devices, etc.) that they do not fully trust.
Self-testing the states or apparatuses makes this possible in some cases. Device-independent cryptography
is quite a large area and we will not cover it in this survey; see, e. g., [28, 62, 9, 162, 163] for more about
this area.

1.3 Quantum testing of quantum properties

In the final part of the paper we will consider cases where X is a set of quantum objects and our tester is
also quantum, which is a setting of both theoretical and experimental interest.

As experimentalists control ever-larger quantum systems in the lab, the question of how to characterize
and certify these systems becomes ever more pressing. Small quantum systems can be characterized via a
procedure known as quantum state tomography [139, 134]. However, completely determining the state
of a system of n qubits necessarily requires exponentially many measurements in n. This is already a
daunting task for fairly small experiments; for example, Häffner et al. [87] report tomography of a state
of 8 ions requiring 656,100 experiments and a total measurement time of 10 hours. One way of reducing
this complexity is to start with the assumption that the state is of a certain form (such as a low-rank mixed
state [81, 68] or a matrix product state [63]), in which case the number of parameters required to be
estimated can be dramatically reduced. The viewpoint of property testing suggests another approach: the
direct determination of whether or not something produced in the lab has a particular property of interest,
under the assumption that it either has the property or is far away from it.

One can view classical property testing algorithms in two ways: either as testing properties of data
(such as graph isomorphism), or properties of functions (such as linearity). If one wishes to generalize
property testing to the quantum realm, one is thus naturally led to two different generalizations: testing
properties of quantum states, and properties of quantum operations. One can divide each of these further,
according to whether the state is pure or mixed, and whether the operation is reversible or irreversible; this
classification is illustrated in Table 1. We discuss each of these possibilities in Sections 4 and 5. Within
some of these categories there are natural generalizations of properties studied classically. For example,
testing properties of mixed states is analogous to the classical idea of testing properties of probability
distributions. Some quantum properties, however, have no simple classical analog (such as properties
relating to entanglement).

Coherent Incoherent
Static Pure state (§4.1) Mixed state (§4.2)

Dynamic Unitary operator (§5.1) Quantum channel (§5.2)

Table 1: The taxonomy of quantum properties.

Classically, there are many connections known between property testing and computational com-
plexity. In Section 6 we explore the link between quantum property testing and quantum computational
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complexity, including the use of property testers to prove results in computational complexity, and the
use of computational complexity to prove limitations on property testers.

2 Quantum testing of classical properties

2.1 Preliminaries

We will use [m] to denote {1, . . . ,m} and Zm to denote {0, . . . ,m− 1} modulo m. When considering
(quantum or classical) testers for classical objects, those classical objects are usually strings, X= [m]N ,
and the complexity of testers is measured by the number of queries they make to their input x. In some
cases we let x correspond to a function f : [N]→ [m], where f (i) = xi, and i may be viewed as either an
integer i ∈ [N], or as its binary representation i ∈ {0,1}dlogNe.

Here we briefly define the quantum query model, referring to [51] for more details. We assume some
basic familiarity with classical and quantum computing [134].

Informally, a query allows us to “read” xi for any i of our choice. Mathematically, to make this
correspond to a quantum operation, it is modeled by the unitary map

Ox : |i〉|b〉 7→ |i〉|b+ xi〉 .

Here the first register has dimension N and the second has dimension m. The answer xi is added into this
second register mod m. Part of the power of quantum query algorithms comes from their ability to apply a
query to a superposition of different is, thus globally “accessing” the input x while using only one query.

If m = 2, then putting the state

|−〉= 1√
2
(|0〉− |1〉)

in the second register has the following effect:

Ox : |i〉|−〉 7→ |i〉 1√
2
(|0+ xi〉− |1+ xi〉) = (−1)xi |i〉|−〉 .

We will sometimes call this a “phase-query,” because the answer xi to the query is inserted in the state as
a phase (+1 if xi = 0, and −1 if xi = 1).

A T -query quantum algorithm is described by an initial state, say
∣∣0k
〉
, and T + 1 fixed k-qubit

unitaries U0, . . . ,UT . The final state when the algorithm runs on input x is obtained by interleaving these
unitaries with queries to x (Ox may be tensored with the identity operation on the remaining workspace
qubits),

|ψx〉=UT OxUT−1Ox · · ·OxU1OxU0|0k〉 .

This final state depends on x via the T queries. A measurement of the final state will determine the
classical output of the algorithm.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 7 (2016), pp. 1–81 8

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


A SURVEY OF QUANTUM PROPERTY TESTING

2.2 Upper bounds

In this section we survey the main speed-ups that have been obtained using quantum testers for classical
properties. Typically these apply pre-exisiting quantum algorithms to problems in property testing. Our
distance measure will be normalized Hamming distance

d(x,y) =
|{i : xi 6= yi}|

N
,

unless explicitly stated otherwise.

2.2.1 Using amplitude amplification

A simple but very general way that quantum algorithms can speed up many classical property testers is
via the powerful primitive of amplitude amplification, which was introduced by Brassard et al. [42] and
can be seen as a generalization of Grover’s quantum search algorithm [82]. We assume we are given
query access to some function f (treated as a black box), and have a quantum algorithm which, with
probability p, outputs w such that f (w) = 1. Then the result of Brassard et al. is that, for any p > 0, we
can find a w such that f (w) = 1 with O(1/

√
p) queries to f , with success probability at least 2/3.

Amplitude amplification can be immediately applied to speed up classical property testers which
have perfect completeness. Here we think of w as the internal randomness of the algorithm, and f (w) as
the test which is applied to the unknown object, based on the random bits w. We let f (w) = 0 if the test
accepts, and f (w) = 1 if the test rejects. Assuming that the test has perfect completeness, finding w such
that f (w) = 1 is equivalent to determining whether we should reject. Given that the original test used q
queries to find such a w with probability p > 0, we therefore obtain a test which uses O(q/

√
p) queries,

still has perfect completeness, and rejects with constant probability.
For example, consider the well-studied classical property of Linearity [39]. A function f : {0,1}n→

{0,1} is said to be linear if f (x⊕ y) = f (x)⊕ f (y), and affine if f (x⊕ y) = f (x)⊕ f (y)⊕1, where ⊕
is addition modulo 2. (Linearity is equivalent to the condition f (x) =

⊕
i∈S xi for some S ⊆ [n].) A

simple and natural test for linearity is to pick x,y ∈ {0,1}n uniformly at random and accept if and only if
f (x)⊕ f (y) = f (x⊕y). This test uses only 3 queries, has perfect completeness, and can be shown [33] to
reject functions f which are ε-far from linear with probability at least ε . Applying amplitude amplification
to this tester, we immediately get a quantum ε-tester for Linearity which uses O(1/

√
ε) queries. Another

simple example is Symmetry, where f : {0,1}n→{0,1} is said to be symmetric if f (x) depends only
on |{i : xi = 1}|. A classical tester for this property has been given by Majewski and Pippenger [122].
The tester uses 2 queries, has perfect completeness and rejects functions which are ε-far from symmetric
with probability at least ε . Therefore, we again obtain a quantum ε-tester which uses O(1/

√
ε) queries.

Hillery and Andersson [95] gave different quantum testers for these two properties (though also
based on amplitude amplification), each of which uses O(ε−2/3) queries, which is worse. More recently,
Chakraborty and Maitra [52] described a quantum algorithm for the closely related problem of testing
whether a Boolean function is affine. Their algorithm also uses O(1/

√
ε) queries and, although presented

slightly differently, is also based on amplitude amplification.
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2.2.2 Using the Bernstein-Vazirani algorithm

One of the first quantum algorithms was the Bernstein-Vazirani algorithm [36]. It efficiently decodes a
given Hadamard codeword. Let N = 2n, and identify [N] with {0,1}n so we can use the n-bit strings to
index the numbers 1, . . . ,N.2 Let h : {0,1}n→{0,1}N be the Hadamard encoding, defined by h(s)i = s · i
mod 2; this is nothing more than identifying s with the linear function h(s)(i) = s · i mod 2 and writing
out its truth table. Note that two distinct Hadamard codewords h(s) and h(s′) are at normalized Hamming
distance exactly 1/2. Given input h(s), the Bernstein-Vazirani algorithm recovers s with probability 1
using only one quantum query. In contrast, any classical algorithm needs Ω(logN) queries for this. The
quantum algorithm works as follows:

1. Start with |0n〉 and apply Hadamard gates to each qubit to form the uniform superposition

1√
N ∑

i∈{0,1}n

|i〉 .

2. Apply a phase-query to obtain
1√
N ∑

i∈{0,1}n

(−1)xi |i〉 .

3. Apply Hadamard transforms to each qubit and measure.

If xi = s · i for all i ∈ {0,1}n, then it is easy to see that the measurement yields s with probability 1.
Buhrman et al. [49] showed this algorithm can be used to obtain an unbounded quantum speed-up for

testing most subsets of Hadamard codewords.

Bernstein-Vazirani property for A⊆ {0,1}n:

PA
BV = {x ∈ {0,1}N : ∃s ∈ A such that x = h(s)} .

Theorem 1 (Buhrman et al. [49]). For every A⊆ {0,1}n there is an O(1/
√

ε)-query quantum ε-tester
for PA

BV ; in contrast, for a 1−o(1) fraction of all sets A, every classical 1/2-tester for PA
BV needs Ω(logN)

queries.

Proof. Quantum upper bound. We run the Bernstein-Vazirani algorithm on input x, which takes one
quantum query. The algorithm will output some s, and if x equals some h(s) ∈ PA

BV then this will be the
corresponding s with certainty. Hence if s 6∈ A we can reject immediately. If s ∈ A then choose i ∈ [N]
at random, query xi, and test whether indeed xi = s · i. If x is ε-far from PA

BV then this test will fail with
probability ε . Using amplitude amplification, we can detect any x that is ε-far from PA

BV with success
probability at least 2/3 using O(1/

√
ε) queries.

Classical lower bound. Choose the set A⊆ {0,1}n uniformly at random. Consider the uniform input
distribution over the set H of all N Hadamard codewords. Note that the Hadamard codewords that are not

2In many presentations of the Bernstein-Vazirani, Simon, and Grover algorithms, the input is taken to be a function
f : {0,1}n→{0,1} rather than a string x ∈ {0,1}N . With N = 2n, these two views are of course just notational variants of one
another.
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in PA
BV are 1/2-far from PA

BV , because any two distinct Hadamard codewords have normalized Hamming
distance exactly 1/2. Hence if PA

BV can be 1/2-tested with T queries, then there exists a decision tree
(i. e., a deterministic query algorithm) that is correct on at least 2/3 of the x ∈ H. Fix a deterministic
decision tree T of depth T . For each x ∈ H, the probability (over the choice of A) that x ∈ PA

BV is 1/2,
irrespective of the output that T gives on x, so the probability that T correctly decides x is 1/2. Then the
probability that T correctly decides at least 2/3 of the x ∈ H is 2−Ω(N) by a Chernoff bound. The total
number of deterministic decision trees of depth T is at most 22T

N2T−1, because for each of the (at most)
2T −1 internal nodes we have to choose an index to query, and for each of the (at most) 2T leaves we
have to choose a binary output value. Hence by the union bound, the probability (over the choice of A)
that there exists a depth-T decision tree that correctly decides at least 2/3 of the x ∈ H is at most

2−Ω(N) ·22T
N2T−1 .

For T = (logN)/2 this quantity is negligibly small. This shows that a 1−o(1) fraction of all possible
sets A, there is no classical tester for PA

BV with (logN)/2 or fewer queries.

As Buhrman et al. [49] noted, the above classical lower bound is essentially optimal because for every
property P⊆ {0,1}N there exists an ε-tester with T = dln(3|P|)/εe queries, as follows. We just query
the input x ∈ {0,1}N at T uniformly randomly chosen positions, and accept if and only if there is still at
least one element y ∈ P that is consistent with all query outcomes. Clearly, if the input is in P this test
will accept, so it has perfect completeness. If the input is ε-far from P, then the probability for a specific
y ∈ P to “survive” T queries is at most (1− ε)T . Hence by the union bound the probability that there is a
y ∈ P surviving all T queries is at most |P| · (1− ε)T ≤ |P| · e−εT ≤ 1/3.

2.2.3 Testing juntas

Let f : {0,1}n→{+1,−1} be a Boolean function (such an f can also be viewed as a string x of N = 2n

bits, with xi = f (i)), and J ⊆ [n] be the set of (indices of) variables on which f depends. If |J| ≤ k then f
is called a k-junta.

k-junta property:

Pk-junta = { f : {0,1}n→{+1,−1} : f depends on at most k variables} .

The best known classical tester, due to Blais, uses O(k logk+ k/ε) queries [37], and the best known
classical lower bound is Ω(k) [57] (for fixed ε).

Atıcı and Servedio [20] gave an elegant quantum ε-property tester for Pk-junta using O(k/ε) quantum
queries, slightly better than Blais’s classical tester.3

Theorem 2 (essentially Atıcı and Servedio [20]). There is a quantum tester for k-juntas that uses O(k/
√

ε)
queries.

3In fact, at the time [20] was written the best classical upper bound was only O((k logk)2/ε) [67].
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“Essentially” in the attribution of the above theorem refers to the fact that [20] proves an O(k/ε)
bound. We observe here that the dependence on ε can easily be improved by a square root using amplitude
amplification.

Proof. The basic quantum subroutine is the same as the Bernstein-Vazirani algorithm in Section 2.2.2:

1. Start with |0n〉 and apply Hadamard gates to each qubit to form the uniform superposition

1√
N ∑

i∈{0,1}n

|i〉 .

2. Apply a phase-query to obtain
1√
N ∑

i∈{0,1}n

f (i)|i〉 .

3. Apply Hadamard transforms to each qubit and measure.

Let us analyze this subroutine by means of some Fourier analysis on the Boolean cube (see [135, 169] for
background). For every s ∈ {0,1}n, let

f̂ (s) =
1
2n ∑

i∈{0,1}n

f (i)(−1)i·s

be the corresponding Fourier coefficient. Going through the steps of the quantum subroutine, it is easy to
see that the final state before the measurement is

∑
s∈{0,1}n

f̂ (s)|s〉 .

Accordingly, the final measurement will sample an s ∈ {0,1}n from the distribution given by the squared
Fourier coefficients f̂ (s)2. This procedure is known as Fourier Sampling [36]. It uses one query to f .

Let J be the set of variables on which the input f depends. The goal of the tester is to decide whether
|J| ≤ k or not. Identifying sets s⊆ [n] with their characteristic vectors s ∈ {0,1}n, note that f̂ (s) 6= 0 only
if the support of s lies within J, so each Fourier Sample gives us a subset of J. The tester will keep track
of the union W of the supports seen so far. We will always have W ⊆ J, so if f is a k-junta then W will
never have more than k elements. On the other hand, below we show that if f is ε-far from any k-junta,
then with high probability after O(k/

√
ε) queries W will end up having more than k elements.

For a subset W ⊆ [n] of size at most k, define

gW (i) = ∑
s⊆W

f̂ (s)(−1)i·s .

This function gW need not be a Boolean function, but we can consider the Boolean function hW that is the
sign of gW . This hW only depends on the variables in W , so it is a k-junta and hence ε-far from f . Now
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we have

ε ≤ 1
2n ∑

i: f (i)6=hW (i)
1

≤ 1
2n ∑

i: f (i)6=hW (i)
( f (i)−gW (i))2

≤ Ei∈{0,1}n [( f (i)−gW (i))2]

= ∑
s
( f̂ (s)− ĝW (s))2

= ∑
s6⊆W

f̂ (s)2 ,

where the first equality is Parseval’s identity. But this means that with probability at least ε , Fourier
Sampling will output an s that is not fully contained in W . Now we use amplitude amplification to find
such an s, using an expected number of O(1/

√
ε) queries, and set W :=W ∪ s (so W ’s size grows by at

least one). Repeating this at most k+1 times, after an expected number of O(k/
√

ε) queries the set W
(which was initially empty) will contain more than k variables and we can reject the input.

Very recently Ambainis et al. [17] came up with a quantum k-junta tester that uses only Õ(
√

k/ε)
queries.4 Unlike the tester of Atıcı and Servedio, this actually beats the best known classical lower
bound. The algorithm of [17] uses the adversary bound (see Section 2.3.2 below), building upon
quantum algorithms due to Belovs [34] for learning the relevant variables of the junta. Their algorithm
is substantially more complicated than the above, and we will not explain it here. They also give an
implementation of their algorithm with time complexity (i. e., number of quantum gates used) Õ(n

√
k/ε).

They prove a quantum lower bound of Ω(k1/3) queries, leaving open the following:

Question 1. What is the quantum query complexity of testing juntas?

2.2.4 Using Simon’s algorithm

The first exponential speed-up for quantum property testing was obtained by Buhrman et al. [49]. It
is inspired by Simon’s algorithm [156], which was the first algorithm to have a provable exponential
speed-up over classical algorithms in the black-box model and inspired Shor’s factoring algorithm [154]
(which we will see in the next section). Again let N = 2n and identify [N] with {0,1}n. Consider an input
x ∈ [N]N for which there exists an s ∈ {0,1}n\{0n} such that xi = x j if and only if ( j = i or j = i⊕ s).
Simon’s algorithm finds s with high probability using O(logN) queries. The core of the algorithm is the
following quantum subroutine:

1. Start with |0n〉|0n〉 and apply Hadamard transforms to the first n qubits to form

1√
N ∑

i∈{0,1}n

|i〉|0n〉 .

4The Õ(·) notation hides logarithmic factors in k.
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2. Apply a query to obtain
1√
N ∑

i∈{0,1}n

|i〉|xi〉 .

3. Measure the second register. This yields some z = xi and collapses the first register to the two
indices with value z:

1√
2
(|i〉+ |i⊕ s〉) .

4. Apply Hadamard transforms to the first n qubits and measure the state, obtaining some y ∈ {0,1}n.

It is easy to calculate that the measured state is (up to phases) a uniform superposition over all 2n−1

strings y ∈ {0,1}n that satisfy s · y = 0 (mod 2). Each such y gives us a linear constraint (mod 2) on the
bits of s. Repeating this subroutine Θ(n) times gives, with high probability, n−1 linearly independent
y(1), . . . ,y(n−1) all orthogonal to s. From these, s can be calculated classically by Gaussian elimination.
Brassard and Høyer [41] subsequently gave an exact version of this algorithm, where each new y is
produced by a modification of Simon’s subroutine that uses O(1) queries and is guaranteed to be linearly
independent from the previous ones (as long as such a linearly independent y exists).

This algorithm can be used to obtain a strong quantum speed-up for testing a specific property.

Simon property:

PSimon = {x ∈ [N]N : ∃s ∈ {0,1}n\{0n} such that xi = x j if j = i⊕ s}

Note that, compared with Simon’s original problem, the “if and only if” has been replaced with an “if.”
Hence xi and x j can be equal even for distinct i, j for which j 6= i⊕ s. However, also for such more
general inputs, Simon’s quantum subroutine (and the Brassard-Høyer version thereof) only produces y
such that s · y = 0 (mod 2). The speed-up is as follows; for simplicity we state it for fixed ε = 1/4 rather
than making the dependence on ε explicit:

Theorem 3 (essentially Buhrman et al. [49]). There is a quantum 1/4-property tester for the Simon
property using O(logN) queries, while every classical 1/4-property tester needs Ω(

√
N) queries.

“Essentially” in the attribution of the above theorem refers to the fact that Buhrman et al. [49] devised
a property of binary strings of length N. In our presentation it will be more convenient to consider a
property consisting of strings over alphabet [N]. As remarked by Aaronson and Ambainis [3], Theorem 3
has an interesting consequence regarding the question of when we can hope to achieve exponential
quantum speed-ups. In order to obtain a super-polynomial quantum speed-up for computing some
function f in the query complexity model, it is known that there has to be a promise on the input, i. e., f
has to be a partial function [32]. The Simon property indeed involves a promise on the input, namely that
it is either in or far from PSimon; however, this promise is in some sense very weak, as the algorithm has
to output the right answer on a 1−o(1) fraction of [N]N .

Proof. Quantum upper bound (sketch). We run the Brassard-Høyer version of Simon’s subroutine
n−1 times. We then classically compute a non-zero string s that is orthogonal to all the n−1 strings y
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produced by these runs (there may be several such s, in which case we just pick any). We then randomly
choose i ∈ [N], query xi and xi⊕s, and check if these two values are equal. If x ∈ PSimon then s will have
the property that xi = xi⊕s for all i. On the other hand, if x is 1/4-far from PSimon, then there exist at least
N/4 (i, i⊕ s)-pairs such that xi 6= xi⊕s (for otherwise we could put x into PSimon by changing one value
for each such pair, making fewer than N/4 changes in total). Hence in this case we reject with constant
probability. Testing a few different (i, i⊕ s)-pairs reduces the error probability to below 1/3.

Classical lower bound. Consider three distributions: D1 is uniform over PSimon, D0 is uniform over
all x ∈ [N]N that are 1/4-far from PSimon, and U is uniform over [N]N . We first show D0 and U are very
close.

Claim 4. The total variation distance between D0 and U is o(1).

Proof. Let S = {y : y is not 1/4-far from PSimon} be the elements that are not in the support of D0. We
will upper bound the size of S. Each element of PSimon can be specified by giving an s ∈ {0,1}n\{0n}
and giving for each of the N/2 (i, i⊕ s)-pairs the value xi = xi⊕s. Hence

|PSimon| ≤ (N−1)NN/2 .

For each x, the number of y that are 1/4-close to x is at most
( N

N/4

)
NN/4. Hence the total number of

elements 1/4-close to PSimon is

|S| ≤ (N−1)NN/2
(

N
N/4

)
NN/4 = o(NN) .

Since U is uniform over [N]N and D0 is uniform over [N]N\S, the total variation distance between these
two distributions is O(|S|/NN) = o(1).

To finish the proof, below we slightly adapt the proof in [156] to show that a T -query classical
algorithm distinguishing distributions D1 and U has advantage of only O(T 2/N) over random guessing.5

Since D0 and U are o(1)-close, a T -query classical algorithm distinguishing distributions D1 and D0
has advantage O(T 2/N)+ o(1) over random guessing. A classical tester for the Simon property can
distinguish D1 and D0 with success probability at least 2/3, so it needs T = Ω(

√
N) queries. It remains

to prove:

Claim 5. A T -query classical algorithm for distinguishing distributions D1 and U has advantage O(T 2/N)
over random guessing.

Proof. By the well-known Yao principle [171], it suffices to prove the claim for an arbitrary deterministic
T -query algorithm. The proof will show that both under D1 and U the T queries are likely to yield a
uniformly random sequence of T distinct values. Suppose the algorithm queries the indices i1, . . . , iT (this
sequence may be adaptive, i. e., depend on x) and gets outputs xi1 , . . . ,xiT . Call a sequence of queries
i1, . . . , iT good (for input x) if it shows a collision, i. e., xik = xi` for some k 6= `. Call the sequence bad
(for x) otherwise. We will now show that the probability of a bad sequence is O(T 2/N), both under input
distribution U and under D1.

5The “advantage” of the algorithm is the difference between success and failure probabilities.
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First, suppose the input x is distributed according to U. Then each output xik is uniformly distributed
over [N], independent of the other entries of x. The probability that ik and i` form a collision is exactly 1/N,
so the expected number of collisions among the T queries is

(T
2

)
/N = O(T 2/N). Hence, by Markov’s

inequality, the probability that i1, . . . , iT form a good sequence is O(T 2/N).
Second, suppose the input x is distributed according to D1. Then there exists a nonzero s ∈ {0,1}n,

unknown to the algorithm, such that xi = x j whenever j = i⊕ s. Initially, all such s are equally likely
under D1 (the probability that there are two distinct such s for x is negligibly small, and we will ignore
this here). If i1, . . . , ik−1 is bad, then we have excluded

(k−1
2

)
of the N−1 possible values of s, and all

other values of s are equally likely. Let ik be the next query and S = {ik⊕ i j : j < k}. This set S has at
most k−1 members, so the probability (under D1) that S happens to contain the string s is at most

k−1

N−1−
(k−1

2

) .
If S does not contain s, then the only way to make the sequence good is if the uniformly random value xik
equals one of the k−1 earlier values, which has probability (k−1)/N. Hence the probability that the
bad sequence i1, . . . , ik−1 remains bad, after query ik is made, is very close to 1. More precisely:

Pr[i1, . . . , iT is bad] =
T

∏
k=2

Pr[i1, . . . , ik is bad : i1, . . . , ik−1 is bad]

≥
T

∏
k=2

(
1− k−1

N−1−
(k−1

2

) − k−1
N

)

≥ 1−
T

∑
k=2

(
k−1

N−1−
(k−1

2

) + k−1
N

)
.

Here we used the fact that (1−a)(1−b)≥ 1− (a+b) if a,b≥ 0. The latter sum over k is O(T 2/N), so
the probability (under D1) that i1, . . . , iT form a good sequence is O(T 2/N).

In both cases (U and D1), conditioned on seeing a bad sequence, the sequence of outputs is a
uniformly random sequence of T distinct values. Accordingly, the advantage (over random guessing) of
the algorithm trying to distinguish these two distributions is upper bounded by the probability of seeing a
good sequence, which is O(T 2/N) in both cases.

This concludes the proof of Theorem 3.

2.2.5 Using Shor’s algorithm

Probably the most famous quantum algorithm to date is Shor’s polynomial-time algorithm for factor-
ing integers [154]. Its quantum core is an algorithm that can find the period of a periodic sequence.
Chakraborty et al. [53] used this to show that testing periodicity exhibits a constant-versus-polynomial
quantum-classical separation. Note that the Bernstein-Vazirani property (Section 2.2.2) exhibits a
constant-versus-logarithmic separation, while the Simon property (Section 2.2.4) exhibits a logarithmic-
versus-polynomial separation. Periodicity-testing thus exhibits a separation that is in some ways stronger
than either of those.
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Periodicity: let p be a prime number and m an integer such that m≥ p. A string x ∈ [m]N is
1-1-p-periodic if it satisfies that xi = x j if and only if i = j mod p (equivalently, the elements
in the sequence x0, . . . ,xp−1 are all unique, and after that the sequence repeats itself). For
integers q and r such that q≤ r ≤

√
N/2, define the property

P
q,r
period = {x ∈ [m]N : x is 1-1-p-periodic for some p ∈ {q, . . . ,r}} .

Note that for a given p it is easy to test whether x is p-periodic or far from it: choose an i ∈ [N]
uniformly at random, and test whether xi = xi+kp for a random positive integer k. If x is p-periodic then
these values will be the same, but if x is far from p-periodic then we will detect this with good probability.
However, r−q+1 different values of p are possible in P

q,r
period. Below we will set q = r/2 so r/2+1

different values for the period are possible. This makes the property hard to test for classical testers. On
the other hand, in the quantum case the property can be tested efficiently.

Theorem 6 (Chakraborty et al. [53]). For every even integer r ∈ [2,
√

N) and constant distance ε , there is
a quantum property tester for Pr/2,r

period using O(1) queries, while every classical property tester for Pr/2,r
period

makes Ω(
√

r/ logr logN) queries. In particular, for r =
√

N testing can be done with O(1) quantum
queries but requires Ω(N1/4/ logN) classical queries.

The quantum upper bound is obtained by a small modification of Shor’s algorithm: use Shor to find
the period p of input x (if there is such a period) and then test this purported period with another O(1)
queries.6 The classical lower bound is based on modifying proofs from Lachish and Newman [116], who
showed classical testing lower bounds for more general (and hence harder) periodicity-testing problems.

This quantum-classical separation is of the form O(1) quantum queries vs NΩ(1) classical queries, for
a problem over a polynomial-sized alphabet (so each “entry” of the input takes only O(logN) bits). How
large can we make this separation? This was already asked by Buhrman et al. [49] in the following way:

Question 2. Is there a property of strings of length N (over a moderately-sized alphabet) that can be
tested with O(1) quantum queries but needs Ω(N) classical queries?

A very recent result of Aaronson and Ambainis [4] is relevant here: they showed that if a (total or
partial) function on x ∈ {0,1}N can be computed with bounded error probability using k quantum queries,
then the same function can be computed by a classical randomized algorithm using O(N1−1/2k) queries.
They also show that for k = 1 this upper bound is tight up to a logarithmic factor, for a testing problem
called “Forrelation.” In that problem, roughly, the input consists of two Boolean functions f and g,
each on `-bit inputs so the total input length is N = 2 ·2` bits, such that g is either strongly or weakly
correlated with the Fourier transform of f (i. e., g(x) = sign( f̂ (x)) either for most x or for roughly half of
the x). They show that this problem can be tested with one quantum query, whereas classical testers need
Ω(
√

N/ logN) queries.7

6These ingredients are already present in work of Hales and Hallgren [89], and in Hales’s Ph. D. thesis [88]. However, their
results are not stated in the context of property testing, and no classical lower bounds are proved there.

7The lower bound improves an earlier N1/4 bound of Aaronson [2], which constituted the first O(1) vs NΩ(1) separation for
quantum vs classical property testing.
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Hence for binary alphabets the answer to the above question is negative: everything that can be tested
with k = O(1) quantum queries can be tested with O(N1−1/2k) = o(N) classical queries. This classical
upper bound can be extended to small alphabets, but the question remains open for instance when the
alphabet size is N.

2.2.6 Using quantum counting

Grover’s quantum search algorithm [82] can be used to find the index i of a 1-bit in x ∈ {0,1}N (i. e.,
xi = 1) with high probability, using O(

√
N) queries. We will not describe the algorithm here, but just

note that it can be modified to also estimate, for given S⊆ [m], the number of occurrences of elements
from S in a string x ∈ [m]N , using a number of queries that is much less than would be needed classically.
More precisely, we have the following “quantum approximate counting” lemma, which follows from the
work of Brassard et al. [42, Theorem 13]:

Lemma 7. There exists a constant C such that for every set S⊆ [m] and every positive integer T , there is
a quantum algorithm that makes T queries to input x ∈ [m]N and, with probability at least 2/3, outputs an
estimate p′ to p = |{i : xi ∈ S}|/N such that |p′− p| ≤C(

√
p/T +1/T 2).

We now describe an application of quantum counting to property testing, namely to testing whether
two probability distributions are equal or ε-far from each other in total variation distance.

Equal distributions property:

Pdistribution = {(p, p) : p is a distribution on [m]} .

Our distance measure on the set of pairs of distributions will be the sum of the total variation distances:

d((p,q),(p′,q′)) =‖ p− p′ ‖tvd + ‖ q−q′ ‖tvd ,

where the total variation distance between two distributions is

‖ p− p′ ‖tvd:=
1
2 ∑

j
|p( j)− p′( j)| .

Note that a pair of distributions (p,q) will be ε-far from Pdistribution if and only if ‖ p−q ‖tvd≥ ε .
There are different ways in which the distributions could be “given” to the tester, but in this section

each distribution will be given as an input x ∈ [m]N . This naturally induces a probability distribution Dx

on [m] according to the relative frequencies of the different elements:

Dx( j) =
|{i : xi = j}|

N
.

We can obtain a sample according to Dx by just querying x on a uniformly random index i. Assuming
the distribution is given in this way is quite natural in the setting of property testing, where our input is
usually a very long string x, much too long to inspect each of its elements. Note that Dx does not change
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if we permute the elements of x; it just depends on the relative frequencies. Also note that Lemma 7 can
be used to estimate the probability of S⊆ [m] under Dx.

Suppose we are given two distributions Dx and Dy on [m] (the distributions are given in the form of
two inputs x,y ∈ [m]N), and we want to test whether these two distributions are equal or ε-far in total
variation distance. Batu et al. [30] exhibited classical testers for this using O((m/ε)2/3 logm) queries,8

and Valiant [160] proved an almost matching lower bound of Ω(m2/3) for constant ε . These bounds have
both recently been improved by Chan et al. [54] to Θ(m2/3/ε4/3), which is tight for all ε ≥m−1/4. Bravyi
et al. [44] showed that quantum testers can do better in terms of their dependence on m:

Theorem 8 (Bravyi et al. [44]). There is a quantum tester to test if two given distributions on [m] are
equal or ε-far using O(

√
m/ε8) queries.

The dependence on ε was recently improved by Montanaro [131], who gave an algorithm which
solves the same problem using O(

√
m/(ε3/2 log(1/ε))) queries.

Proof sketch. Bravyi et al. [44] actually showed something stronger, namely that the total variation
distance between two distributions can be estimated up to small additive error ε using O(

√
m/ε8)

quantum queries; this clearly suffices for testing. We sketch their idea here. Consider the following
random process:

1. Sample j ∈ [m] according to D=
1
2
(Dx +Dy).

2. Output
|Dx( j)−Dy( j)|
Dx( j)+Dy( j)

.

It is easy to see that the expected value of the output of this process is exactly the total variation distance
between Dx and Dy, so it suffices to approximate that expected value. We sample j according to D

(which costs just one query), use the quantum algorithm of Lemma 7 with S = { j} and T = O(
√

m/ε6)
queries to approximate both Dx( j) and Dy( j), and output the absolute difference between these two
approximations divided by their sum. Bravyi et al. [44] show that repeating this O(1/ε2) times and taking
the average gives, with probability at least 2/3, an ε-approximation of the expected value ‖Dx−Dy‖tvd
of the above random process.

A second problem is where we fix one of the two distributions, say to the uniform distribution on [m]
(assume m divides N so we can properly “fit” this distribution in x ∈ [m]N). Goldreich and Ron [78]
showed a classical testing lower bound of Ω(

√
m) queries for this, and Batu et al. [29] proved a nearly

tight upper bound of Õ(
√

m) queries. Bravyi et al. [44], and independently also Chakraborty et al. [53],
showed that testing can be done more efficiently in the quantum case:

Theorem 9 (Bravyi et al. [44], Chakraborty et al. [53]). There is a quantum tester to test if a given
distribution on [m] equals or is ε-far from the uniform distribution on [m], using O(m1/3/ε2) quantum
queries.

8All these classical bounds are stated in terms of number of samples rather than number of queries, but it is not hard to see
that these two complexity measures are equivalent here.
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Proof sketch. Pick a set R⊆ [N] of r = m1/3 indices uniformly at random, and query its elements. If Dx

is uniform then it is very likely that all values {xi}i∈R are distinct, so if there is some collision then we can
reject immediately. Otherwise, let S = {xi : i ∈ R} be the r distinct results, and define p = |{i : xi ∈ S}|/N.
If Dx is uniform then p = r/m = 1/m2/3, but [53, Lemma 13] shows that if Dx is ε-far from uniform then
p will be noticeably higher: there is a constant c > 0 such that with high probability p≥ (1+ cε2)r/m.

Now we use the quantum algorithm of Lemma 7 with T = 4Cm1/3/cε2 queries to obtain (with
high probability) an estimate p′ of p within additive error |p′− p| ≤C(

√
p/T + 1/T 2). We accept if

p′ ≤ (1+ cε2/2)r/m, and reject otherwise. If p = r/m = 1/m2/3 then the additive error is at most

C(cε
2/4Cm2/3 + c2

ε
4/16C2m2/3)≤ cε2

2
· r

m
,

so then we will accept correctly. If p≥ (1+ cε2)r/m then it is easy to show that p′ ≥ (1+ cε2/2)r/m,
so then we will reject correctly.

Both Bravyi et al. [44] and Chakraborty et al. [53] showed that Ω(m1/3) quantum queries are also
necessary, so the above result is essentially tight; the lower bound follows from a reduction from the
collision problem [7]. Bravyi et al. [44] also exhibited a quantum tester for whether two distributions are
equal or of disjoint support (i. e., orthogonal), using O(m1/3) quantum queries. Chakraborty et al. [53]
extended Theorem 9 to testing equality to any fixed distribution (not just the uniform one), at the expense
of a polylog factor in the number of queries. They in turn used equality-testing to obtain better quantum
testers for graph isomorphism.

2.2.7 Using Ambainis’s algorithm

Ambainis’s element distinctness algorithm [16] acts on an input x∈ [m]N , and finds (with high probability)
a pair of distinct indices such that xi = x j if such a pair exist, and reports “no collision” otherwise. It
uses O(N2/3) queries, which is optimal [7]. This algorithm spawned a large class of algorithms based on
quantum walks (see [152] for a survey).

Ambainis et al. [18] use the element distinctness algorithm to give better quantum testers for certain
graph properties. Graph properties have some amount of symmetry: they are invariant under relabelling
of vertices. Problems with “too much” symmetry are known not to admit exponential quantum speed-
up in the query complexity model [3], and the symmetry inherent to graph properties makes them an
interesting test case for the question of how symmetric the problems can be for which we do obtain
a significant quantum advantage. Ambainis et al. [18] use the element distinctness algorithm to give
Õ(N1/3)-query quantum testers for the properties of bipartiteness and being an expander in bounded-
degree graphs. It is known that for classical testers, Θ̃(

√
N) queries are necessary and sufficient to test

these properties [78, 77]. Together with the graph isomorphism tester mentioned briefly at the end of
Section 2.2.6, these are the only quantum results we are aware of for testing graph properties. In contrast,
graph properties have been one of the main areas of focus in classical property testing.

Let us describe the results of [18] a bit more precisely. The object to be tested is an N-vertex graph G
of degree d, so each vertex has at most d neighbors. We think of d as a constant and will absorb the
dependence of the bounds on d into the constant factor. The input is given as an adjacency list. Formally,
it corresponds to an x ∈ ([N]∪{∗})N×d . The entries of x are indexed by a pair of a vertex v ∈ [N] and a
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number i ∈ [d], and xv,i is the ith neighbor of vertex v; xv,i = ∗ in case v has fewer than i neighbors. The
distance between two graphs given as adjacency lists is defined to be the minimal number of edges one
most change in the first graph to obtain the second.

A graph is Bipartite if its set of vertices can be partitioned into two disconnected sets, and is an
Expander if there is a constant c > 0 such that every set S⊆ [N] of at most N/2 vertices has at least c|S|
neighbors outside of S.9

Theorem 10 (Ambainis et al. [18]). There exist quantum testers for Bipartite and Expander using
Õ(N1/3) queries.

Proof sketch. At a high level, the optimal classical testers for both properties look for collisions in a set
of roughly

√
N elements. Using Ambainis’s algorithm, this can be done in roughly N1/3 queries. Let us

see how this works for the two properties.
A bipartite graph has no odd cycles. In contrast, for a graph that is far from bipartite one can show the

following. Among roughly
√

N short (O(logN)-step) random walks from the same starting vertex v, there
is likely to be a pair that “collides” in the sense that one walk reaches a vertex w after an even number of
steps and the other reaches the same vertex w after an odd number of steps. These two paths between v
and w now form an odd cycle. Hence, fixing the randomness of such a classical tester, it suffices to detect
such collisions in a string x ∈ [m]c

√
N , for some constant c > 0, where the alphabet [m] corresponds to

short walks in the graph. A variant of Ambainis’s algorithm can detect this in O((c
√

N)2/3) = O(N1/3)
queries to x. Each query to x corresponds to an O(logN)-walk through the graph, so we use O(N1/3 logN)
queries to the input graph in total.

In the case of expanders, a short random walk will quickly converge to the uniform distribution. In
contrast, for a graph that is far from any expander, such a walk will typically not be very close to uniform.
If we sample k times from the uniform distribution over some s-element set, the expected number of
collisions is

(k
2

)
/s. In particular, for k≈

√
2s we expect to see one collision. In contrast, k samples from a

non-uniform distribution give a higher expected number of collisions. Hence if we do c
√

N short random
walks, for some constant c, then the expected number of collisions among the c

√
N endpoints is likely

to be significantly smaller for an expander than for a graph that is far from every expander. Again we
use a variation of Ambainis’s algorithm, this time to approximately count the number of collisions in an
input x ∈ [m]c

√
N , consisting of the endpoints of the c

√
N random walks. If this number is too high, we

reject. This uses Õ(N1/3) queries to the graph. The technical details are non-trivial, but we will skip them
here.

Ambainis et al. also proved an Ω̃(N1/4) quantum lower bound for testing expanders, using the
polynomial lower bound method (see Section 2.3.1). They were not able to show NΩ(1) lower bounds for
testing bipartiteness. This all leaves the following very interesting question open:

Question 3. Is there any graph property which admits an exponential quantum speed-up?

9Equivalently, if there is a constant gap between the first and second eigenvalue of G’s normalized adjacency matrix. A
crucial property of an expander is that the endpoint of a short (O(logN)-step) random walk starting from any vertex is close to
uniformly distributed over [N]. We refer to [97] for much more background on expander graphs and their many applications.
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2.2.8 Quantum speed-ups for testing group-theoretic properties

Finally, a number of authors have considered quantum testers for properties of groups; we list these here
without explaining them in detail.

• Friedl et al. [71] give efficient quantum testers for the property of periodic functions on groups (the
testers are even time-efficient for Abelian groups), as well as a few other group-theoretic properties.
The testers are based on the use of the (Abelian and non-Abelian) quantum Fourier transform.

• Friedl et al. [70] exhibit an efficient (poly(logN,1/ε)-query) classical tester for the property
of N×N multiplication tables corresponding to N-element Abelian groups, which is based on
“dequantizing” a quantum tester. The distance used is the so-called “edit distance.”

• Inui and Le Gall [100], extending [70], exhibit an efficient (poly(logN,1/ε)-query) quantum tester
for the property of N×N multiplication tables corresponding to N-element solvable groups. In
this case, no efficient classical tester is known.

• Le Gall and Yoshida [117] give classical lower bounds on various group testing problems, which in
particular demonstrate an exponential separation between the classical and quantum complexities
of testing whether the input is an Abelian group generated by k elements (where k is fixed).

2.3 Lower bounds

Here we describe the main methods for obtaining lower bounds on the number of queries that quantum
property testers need. Most such lower bounds have been obtained using the so-called polynomial
method, but in principle the stronger adversary method can give tight bounds for any property. At the
end of this section we also describe an elegant approach for deriving classical testing lower bounds from
communication complexity, leaving its generalization to lower bounds on quantum testers as an open
question.

2.3.1 The polynomial method

The first lower bounds for quantum property testing were proven by Buhrman et al. [49]. They were
based on the polynomial method [32], which we now briefly explain. The key property is:

The acceptance probability of a T -query quantum algorithm on input x ∈ {0,1}N can be
written as an N-variate multilinear polynomial p(x) of degree ≤ 2T .

This property can be generalized to non-Boolean inputs x, but for simplicity we will assume x ∈ {0,1}N

in our presentation.
Note that if we have a T -query quantum tester for some property P⊆ {0,1}N , then its acceptance

probability p is a degree-2T polynomial p such that p(x) ∈ [2/3,1] if x ∈ P; p(x) ∈ [0,1/3] if x is far
from P; and p(x) ∈ [0,1] for all other x. The polynomial method derives lower bounds on the query
complexity T from lower bounds on the minimal degree of such polynomials.

Our first application of this method is a result which is essentially from [49]. Informally, the result
says the following: if we have a property P such that a (not necessarily uniform) random x ∈ P is
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indistinguishable from a random N-bit string if we only look at up to k bits, then the quantum query
complexity of testing P is Ω(k).

Theorem 11 (Buhrman et al. [49]). Let P ⊆ {0,1}N be a property such that the number of elements
ε-close to P is < 2N−1. Let D = (pz) be a distribution on {0,1}N such that pz = 0 for z /∈ P, and
ED[zi1 . . .zi` ] = 2−` for all choices of `≤ k distinct indices i1, . . . , i` ∈ [N]. Then every quantum ε-property
tester for P must make at least (k+1)/2 queries.

Proof. Suppose there is a quantum algorithm which tests P using T queries, where T < (k+1)/2. Then
by the polynomial method, its acceptance probability is given by a polynomial p(z) of degree at most
2T ≤ k. Intuitively, the reason the theorem holds is that such a degree-k polynomial cannot be correlated
with a k-wise independent distribution. To make this precise, assume towards a contradiction that the
algorithm has success probability at least 2/3 on every input z that is in or ε-far from P. Then

Ez∼D[p(z)]≥
2
3

and, letting Pclose be the set of z that are ε-close to P, and U the uniform distribution over {0,1}N , we
have

Ez∼U[p(z)]≤
|Pclose|

2N +
1
3

(
1− |Pclose|

2N

)
<

2
3
.

Write p(z) = ∑S⊆[N] αSmS(z), where mS is the monomial ∏i∈S zi. We have

Ez∼D[p(z)] = ∑
S⊆[N]

αSEz∼D[mS(z)] = ∑
S⊆[N]

αS2−|S| = ∑
S⊆[N]

αSEz∼U[mS(z)] = Ez∼U[p(z)] .

We have obtained a contradiction, which completes the proof.

A variant of Theorem 11, which generalizes the claim to an underlying set [m]N (m > 2) but does not
consider the property testing promise, was independently shown by Kane and Kutin [107]. It is apparently
quite hard to satisfy the uniformity constraint of Theorem 11; however, it can sometimes be achieved.
For example, consider any property which can be expressed as membership of a linear code C ⊆ FN

2 .
Such a linear code is described as the set {Mz : z ∈ {0,1}`} for some N× ` matrix M. A code has dual
distance d if every codeword c′ in the dual code C⊥ := {z : z · c = 0,∀ c ∈ C} satisfies |c′| ≥ d. As Alon
et al. [14] observe, it is well-known in coding theory that if C has dual distance d, then any subset of at
most d−1 of the bits of C are uniformly distributed. As the (easy) proof does not seem easy to find in the
recent literature, we include it here.

Theorem 12. [120, Chapter 1, Theorem 10] Let C⊆ {0,1}N be a code with dual distance d. Then every
k < d bits of codewords in C are uniformly distributed.

Proof. Dual distance d implies that every set of k ≤ d−1 rows in the matrix M are linearly independent
(otherwise such a linear combination would imply the existence of a Hamming weight k < d vector z
such that Mz = 0N). So for each submatrix M′ formed by choosing k rows from M, all the rows of M′ are
linearly independent, hence the output M′z is uniformly distributed over {0,1}k.
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Thus, if C has dual distance d, taking D to be uniform over C in Theorem 11 gives an Ω(d) lower
bound on the quantum query complexity of testing membership in C. A natural example for which this
result gives a tight lower bound is the Reed-Muller code R(d, `). Each codeword of this code is a binary
string of length N = 2` obtained by evaluating a function f : {0,1}`→{0,1}, which can be written as
a degree-d polynomial in ` variables over F2, at every element z ∈ {0,1}`. R(d, `) is known to have
dual distance 2d+1 [120, Chapter 13], so Theorem 11 implies that any quantum algorithm testing the
set of degree-d polynomials in ` variables over F2 must make Ω(2d) queries. In particular, this means
that quantum algorithms obtain no asymptotic speed-up, in terms of their dependence on d, over the
best classical algorithm for testing this property [14]. One can generalize this whole argument to derive
quantum lower bounds for testing membership of various interesting properties corresponding to codes
over Fq, for q > 2; we omit the details. One example of this approach outside of the property-testing
setting is [107], which proves bounds on the complexity of quantum interpolation of polynomials. Here
the relevant code is the Reed-Solomon code.

Buhrman et al. also applied the polynomial method to show, by a counting argument, that most
properties do not have an efficient quantum property tester. Informally speaking, there are too many
properties, and too few low-degree polynomials.

Theorem 13 (Buhrman et al. [49]). Let P⊂ {0,1}N be chosen at random subject to |P|= 2N/20, and fix
ε to be a small constant. Then, except with probability exponentially small in N, any quantum ε-property
tester for P must make Ω(N) queries.

A more involved application of the polynomial method is the tight Ω(logN) lower bound that Koiran
et al. [113] proved for the quantum query complexity of Simon’s problem. With a bit of work, their proof
also works to show that the property tester presented in Section 2.2.4 is essentially optimal.

Another highly non-trivial application of the polynomial method is the Ω̃(N1/4) lower bound of
Ambainis et al. [18] for testing the property of a bounded-degree graph being an Expander (see Sec-
tion 2.2.7). Their lower bound is inspired by the one for the collision problem [7], and at a high level
works as follows. They give an input distribution D` over N-vertex d-regular graphs with ` components,
obtained from M-vertex graphs that consist of ` equal-sized random parts (M is slightly bigger than N
and divisible by `; its role in the proof is rather technical). They then show that the acceptance probability
of a T -query quantum tester can be written as an O(T logT )-degree bivariate polynomial p(`,M) in `
and M. A random graph of `= 1 components is very likely to be an expander, so p(1,M)≈ 1; on the
other hand, every graph with ` > 1 components will be far from an expander, so p(`,M)≈ 0 for integers
` > 1. They then use results about polynomial approximation to show that such polynomials need degree
Ω(N1/4).

2.3.2 The adversary method

The two main lower bound methods that we know for quantum query complexity are the above polynomial
method, and the so-called adversary method, introduced by Ambainis [15]. For a long time this adversary
method faced the so-called “property testing barrier” [99]: for every N-bit partial Boolean function where
all 0-inputs are at Hamming distance Ω(N) from all 1-inputs, the method can prove only a constant lower
bound on the query complexity. Note that all testing problems for classical properties with respect to
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Hamming distance fall in this regime, since the 0-inputs are required to be far from all 1-inputs (i. e.,
elements of the property).

However, Høyer et al. [99] generalized Ambainis’s method to something substantially stronger,
which can prove optimal bounds for quantum property testing. We now describe their “negative weights”
adversary bound. Let F : D→ {0,1}, with D ⊆ [m]N , be a Boolean function. An adversary matrix Γ

for F is a real-valued matrix whose rows and columns are indexed by all x ∈ D, satisfying that Γxy = 0
whenever f (x) = f (y). Let ∆ j be the Boolean matrix whose rows and columns are indexed by all x ∈ D,
such that ∆ j[x,y] = 1 if x j 6= y j, and ∆ j[x,y] = 0 otherwise. The (negative-weights) adversary bound for F
is given by the following expression:

ADV±(F) = max
Γ

‖ Γ ‖
max j∈[N] ‖ Γ◦∆ j ‖

,

where Γ ranges over all adversary matrices for F , “◦” denotes entry-wise product of two matrices, and
“‖ · ‖” denotes operator norm (largest singular value) of the matrix.10

Høyer et al. [99] showed that this quantity is indeed a valid lower bound: every quantum algorithm
that computes F with error probability ≤ ε needs to make at least

1
2
(
1−
√

ε(1− ε)
)
ADV±(F)

queries. Subsequently, Reichardt et al. [145, 118] showed this lower bound is actually essentially tight: for
every Boolean function F there is a quantum algorithm computing it with error≤ 1/3 using O(ADV±(F))
queries. Since property testing is just a special case of this (the 1-inputs of F are all x∈P, and the 0-inputs
are all x that are far from P), in principle the adversary bound characterizes the quantum complexity
of testing classical properties. However, in practice it is often hard to actually calculate the value of
ADV±(F), and we are not aware of good quantum property testing lower bounds that have been obtained
using this method.

2.3.3 A communication complexity method?

Recently, a very elegant lower bound method for classical property testing was developed by Blais et
al. [38], based on communication complexity. In the basic setting of communication complexity [172, 115],
two parties (Alice with input x and Bob with input y) try to compute a function F(x,y) that depends on
both of their inputs, using as little communication as possible. This is a very well-studied model with
many applications, particularly for deriving lower bounds in other areas, such as circuits, data structures,
streaming algorithms, and many others (for which see [115]).

Blais et al. [38] showed for the first time how to derive property testing lower bounds from communi-
cation complexity. Their idea is to convert a T -query property tester for some property P into a protocol
for some related communication problem F , by showing that 1-inputs (x,y) for F somehow correspond to
elements of P, while 0-inputs (x,y) for F correspond to elements that are far from P. The more efficient
the tester, the less communication the protocol needs. Communication complexity lower bounds for F
then imply lower bounds on the complexity T of the tester.

10Crucially, the adversary matrix Γ may have negative entries. Restricting it to non-negative entries gives one of the many
equivalent formulations of Ambainis’s earlier adversary method [157].
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This is best explained by means of an example. A k-linear function f : {0,1}n→{0,1} is a linear
function that depends on exactly k of its input bits: there exists a weight-k x ∈ {0,1}n such that f (i) = i ·x
mod 2 for all i ∈ {0,1}n. Let P be the set of k-linear functions, and assume k is even. Suppose we have a
randomized T -query tester T for P. We will show how such a tester induces an efficient communication
protocol for the communication complexity problem of deciding whether weight-k/2 strings x ∈ {0,1}n

and y ∈ {0,1}n are disjoint or not (i. e., whether x∧ y = 0n). Alice, who received input x, forms the
function f (i) = i · x and Bob forms the function g(i) = i · y. Consider the function h(i) = i · (x⊕ y). Since
|x⊕y|= |x|+ |y|−2|x∧y| and |x|+ |y|= k, the function h is a (k−2|x∧y|)-linear function. In particular,
h is a k-linear function if x and y are disjoint, and 1/2-far from any k-linear function if x and y intersect.
Now Alice and Bob use a shared random coin to jointly sample one of the deterministic testers that make
up the property tester T. Note that they can simulate a query i to h by 2 bits of communication: Alice sends
i · x to Bob and Bob sends i · y to Alice. Hence a T -query tester for P implies a 2T -bit communication
protocol for disjointness on weight-k/2 inputs x and y. Plugging in the known communication lower
bound [106, 144] of Ω(k) bits for multi-round disjointness on weight-k/2 inputs implies that every
classical tester for k-linear functions needs Ω(k) queries, which is nearly tight (the best upper bound is
O(k logk) due to Blais [37]). Plugging in a better Ω(k logk) lower bound for one-way communication
complexity gives T = Ω(k logk) for non-adaptive classical testers (i. e., testers where the next index to
query is independent of the outcomes of the earlier queries), which is tight [64, 50].

Can we use the same idea to prove lower bounds on quantum testers? In principle we can, but notice
that the overhead when converting a quantum tester into a communication protocol is much worse than in
the classical case. In the classical case, thanks to the fact that Alice and Bob can use shared randomness
to fix a deterministic tester, they both know at each point in the protocol which query i will be made
next. Hence they only need to communicate the constant number of bits corresponding to the answer
to that query, so the overall communication is O(T ). In the quantum case, the queries can be made in
superposition, so the conversion will have an overhead of O(n) qubits of communication: each query will
be “simulated” by an n-qubit message from Alice to Bob, and another such message from Bob to Alice.
More precisely, suppose we let Alice run the T -query quantum tester for P. Whenever the tester wants to
make a query to the function h, its state will be in a superposition

∑
i∈{0,1}n

αi|i〉|φi〉

over all indices i, possibly entangled with another register. To perform a phase-query to h, Alice unitarily
maps |i〉 7→ (−1)i·x, sends the first n qubits of the state to Bob, who unitarily maps |i〉 7→ (−1)i·y and
sends back the n qubits. This correctly implements a phase-query to h

|i〉 7→ (−1)i·x+i·y = (−1)h(i) ,

on Alice’s state, at the expense of 2n qubits of communication. Thus a T -query quantum tester induces a
quantum protocol for disjointness that uses 2nT qubits of communication. But the best communication
lower bound one can hope for on communication complexity problems with n-bit inputs is Ω(n), which
gives only a trivial T = Ω(1) lower bound! This, however, is not due to a suboptimal reduction: for
example, testing k-linear functions can be done with O(1) quantum queries using the Bernstein-Vazirani
algorithm, as in Section 2.2.2.
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Question 4. Can some modification of the ideas of Blais et al. [38] be used to obtain non-trivial lower
bounds on quantum testers?

3 Classical testing of quantum properties

In this section we will survey what is known about classical testing of two kinds of quantum objects:
implementations of basic unitary operations, and implementations of quantum protocols that win certain
two-player games (most famously the “CHSH game”) with high probability. Even though they are testing
properties of quantum objects, our testers will be classical in the sense that they will base their decision
solely on classical data, in particular classical measurement outcomes from feeding classical inputs into
the quantum objects.

Before we go there, let us mention that there is another way in which one can consider classical
testing of quantum properties: by imagining that we are given classical access to a quantum object which
is too large for an efficient classical description. For example, we might be given access to an unknown
pure state |ψ〉 of n qubits by being allowed to query arbitrary amplitudes in the computational basis at
unit cost. This then becomes an entirely classical property testing problem. Some natural properties of
quantum states in this context have indeed been studied classically; one example is the Schmidt rank.
A bipartite state |ψ〉 is said to have Schmidt rank r if it can be written as |ψ〉 = ∑

r
i=1
√

λi|vi〉|wi〉 for
orthonormal sets of states {|vi〉}, {|wi〉} and non-negative λi; this is known as the Schmidt decomposition
of |ψ〉. A tester for this property follows from work of Krauthgamer and Sasson [114], who have given
an efficient tester for low-rank matrices. Their algorithm distinguishes between the case that a d× d
matrix M is rank at most r, and the case that at least an ε-fraction of the entries in M must be changed to
reduce its rank to r. Their algorithm queries only O((r/ε)2) elements of the matrix. If we think of M as
the amplitudes of a bipartite pure quantum state |ψ〉 ∈ (Cd)⊗2 (i. e., Mi j = 〈i|〈 j|ψ〉), this is equivalent to
a tester for the property of |ψ〉 having Schmidt rank at most r.

3.1 Self-testing gates

When experimentalists try to implement a quantum computer in the usual circuit model, they will have
to faithfully implement a number of basic quantum operations, called elementary gates. Suppose we
can implement some superoperator11 G. How can we test whether it indeed implements the gate it is
supposed to implement? We are dealing here with the situation of classical testing of quantum properties,
which means we can only “trust” classical states; we cannot assume that we have trusted machinery to
faithfully prepare specific quantum states. What we can do is faithfully prepare an initial computational
basis state (i. e., a classical state), apply G to it a number of times, measure the resulting state in the
computational basis, and look at the classical outcomes.

For example, say G is supposed to implement (conjugation by) the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
.

11Completely positive trace-preserving linear map, a. k. a. “quantum channel.” See Section 5.2 for more on these.
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If we prepare |0〉, apply G once and measure in the computational basis, the probability to see a 0 should
be 1/2. Similarly, if we prepare |0〉, apply G twice and measure, the probability to see 0 should be 1.
These are examples of so-called experimental equations. In general, an experimental equation specifies
the probability of obtaining a certain outcome from an experiment that starts from a specific classical state
and applies a specific sequence of the available superoperators. A self-tester for a set of gates repeatedly
performs the experiments corresponding to a specific set of experimental equations, in order to verify
that the probabilities of the specified outcomes are indeed (close to) what the equations claim. A good
self-tester will test experimental equations which (when approximately satisfied by G), “essentially” tell
us what G is, in a sense made precise below.

It should be noted that such experimental equations cannot fully pin down a gate. For example, if
G is the Hadamard gate in a basis where |1〉 is replaced with eiφ |1〉, then no experiment as described
above can detect this: H and its cousin satisfy exactly the same experimental equations, and no self-tester
is able to distinguish the two. Still, van Dam et al. [161] showed that such experimental equations are
surprisingly powerful and can essentially characterize many gate sets, including some universal sets.12 For
concreteness we will focus below on a specific universal set, namely the one consisting of the Hadamard
gate H, the π/4-phase gate

T =

(
1 0
0 eiπ/4

)
,

and the controlled-NOT operation. This set has the added benefit that it supports fault-tolerant quantum
computing: implementing these gates up to small error suffices for universal quantum computing.

Let us first define experimental equations a bit more precisely. Following van Dam et al. [161], we
use Prc[ρ] to denote the probability that measuring the (pure or mixed) state ρ in the computational basis
gives outcome c. Then an experimental equation in one superoperator variable G is of the form

Prc[Gk(|b〉〈b|)] = r ,

for b,c ∈ {0,1}, positive integer k, and r ∈ [0,1]. Note that we assume here that we can apply exactly the
same superoperator G more than once. An experimental equation in two variables F and G is of the form

Prc[Fk1G`1 · · ·Fkt G`t (|b〉〈b|)] = r ,

for b,c ∈ {0,1}, integers k1, . . . ,kt , `1, . . . , `t , and r ∈ [0,1] (concatenation of superoperators here denotes
composition). We can similarly write experimental equations in more than two operators, and on systems
of more than one qubit. Such experimental equations are all the things a self-tester can test.

Suppose one-qubit operators H and T are intended to be the Hadamard gate H and the π/4-phase
gate T , respectively, and two-qubit operator C is supposed to be CNOT (with slight abuse of notation we
identify unitary gates with the corresponding superoperators here). Let us see to what extent we can test

12A finite set of gates is universal if every n-qubit unitary can be approximated arbitrarily well (in the operator norm) by
means of a circuit consisting of these gates. We cannot hope to represent all unitaries exactly, because the set of circuits over a
finite (or even countable) set of elementary gates is only countable, hence much smaller than the uncountable set of all unitaries.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 7 (2016), pp. 1–81 28

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


A SURVEY OF QUANTUM PROPERTY TESTING

this. To start, the following experimental equations are clearly necessary for H:

Pr0[H(|0〉〈0|)] = 1/2 ,

Pr0[H2(|0〉〈0|)] = 1 ,

Pr1[H2(|1〉〈1|)] = 1 .

Van Dam et al. [161, Theorem 4.2] showed that these equations characterize the Hadamard gate up to the
one remaining degree of freedom that we already mentioned, in the following sense: H satisfies the above
three equations if and only if there exists φ ∈ [0,2π) such that H equals (the superoperator corresponding
to) Hφ , which is the Hadamard gate where |1〉 is replaced with eiφ |1〉:

Hφ =
1√
2

(
1 e−iφ

eiφ −1

)
.

The unknown phase φ cannot be ignored, because it might interact with the effects of other gates.
The following two experimental equations are clearly necessary for T:

Pr0[T(|0〉〈0|)] = 1 ,

Pr1[T(|1〉〈1|)] = 1 .

These two equations are far from sufficient for characterizing the T gate; for example, every diagonal
unitary will satisfy these two equations, as would the superoperator that fully decoheres a qubit in the
computational basis. However, by introducing some additional equations involving both H and T we can
do better:

Pr0[HT8H(|0〉〈0|)] = 1 ,

Pr0[HTH(|0〉〈0|)] = 1
2
(1+ cos(π/4)) .

Note that if H = H, then both T = T and its inverse T = T−1 would satisfy the above equations; this is
unfortunate, but will turn out below not to matter. Van Dam et al. [161, Theorem 4.4] showed that a pair
of superoperators H and T satisfy the above set of 7 equations if and only if there exists φ ∈ [0,2π) such
that H = Hφ , and T corresponds to either T or T−1.

To complete our self-test, consider the superoperator C. The following experimental equations are
clearly necessary for C to equal CNOT:

Pr00[C(|00〉〈00|)] = 1 ,

Pr01[C(|01〉〈01|)] = 1 ,

Pr11[C(|10〉〈10|)] = 1 ,

Pr10[C(|11〉〈11|)] = 1 .

These equations ensure that C implements the same permutation of basis states as the CNOT gate. This
is still far from sufficient. We add the following experimental equations, which describe the desired
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interaction between CNOT and H:

Pr00[(I⊗H)C(I⊗H)(|00〉〈00|)] = 1 ,

Pr10[(I⊗H)C(I⊗H)(|10〉〈10|)] = 1 ,

Pr00[(H⊗ I)C2(H⊗ I)(|00〉〈00|)] = 1 ,

Pr01[(H⊗ I)C2(H⊗ I)(|01〉〈01|)] = 1 ,

Pr00[(H⊗H)C(H⊗H)(|00〉〈00|)] = 1 .

Van Dam et al. [161, Theorem 4.5] showed that if superoperators H, T, C satisfy the above 16 experimental
equations, then there exists φ ∈ [0,2π) such that:

H = Hφ ; T = T or T = T−1; C =Cφ ,

where Cφ denotes (the superoperator corresponding to the) controlled-NOT gate with |1〉 replaced with
eiφ |1〉.

Because our apparatuses are never perfect, we cannot hope to implement the elementary gates exactly.
Fortunately, thanks to quantum fault-tolerant computing it suffices if we can implement them up to small
error (in fact different applications of the same superoperator can have different errors and need not all be
identical). Hence we also cannot expect the gates that we are testing to exactly satisfy all of the above
experimental equations. Furthermore, even if they did satisfy these equations exactly, we would never
be able to perfectly test this with a finite number of experiments. Accordingly, we would like the test
consisting of these experimental equations to be robust, in the sense that if H, T, and C approximately
satisfy these equations, then they will be close to the gates they purport to be. We say that superoperators
ε-satisfy a set of experimental equations if for each of the equations the left- and right-hand sides differ
by at most ε . We measure closeness between superoperators in the norm induced by the trace norm:13

‖ G ‖∞= sup{‖ G(V ) ‖1:‖V ‖1= 1} ,

where the trace norm (Schatten 1-norm) is defined as ‖M‖1 := tr(|M|).
Van Dam et al. [161, Theorem 6.5, last item] indeed showed that the above equations constitute a

robust self-test:

Theorem 14 (van Dam et al. [161]). There exists a constant c such that for all ε > 0 the following holds.
If superoperators H, T, C ε-satisfy the above 16 experimental equations, then there exists φ ∈ [0,2π)
such that:

‖H−Hφ ‖∞≤ c
√

ε;‖ T−T ‖∞≤ c
√

ε or ‖ T−T−1 ‖∞≤ c
√

ε;‖ C−Cφ ‖∞≤ c
√

ε .

Let us mention explicitly how this testing of sets of gates fits in the framework outlined in the
introduction. The universe now consists of all triples of superoperators (H,T,C). The property P consists

13This norm ‖ G ‖∞ is different from (and weaker than) the diamond norm defined later in Eq. (6.1), which is also often used
to measure distance between superoperators.
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of all triples for which there is a φ such that such that H = Hφ , T = T or T = T−1, and C = Cφ . The
distance measure would be

d((H,T,C),(H′,T′,C′)) = max
(
‖H−H′ ‖∞,‖ T−T′ ‖∞,‖ C−C′ ‖∞

)
.

One can derive a tester from Theorem 14 by running the experiments for each experimental equation
O(1/ε) times, estimating the probabilities in their right-hand side up to additive error c

√
ε , and accepting

if and only if for each of the 16 equations, the estimate is c
√

ε-close to what it should be. This will accept
(with high probability) every triple in P, and reject (with high probability) every triple that is 2c

√
ε-far

from P.
Each triple (H,T,C) that passes the test is a universal (and fault-tolerant) set of elementary gates, so

can in principle be used to realize any quantum circuit. The fact that we do not know φ is not important
when implementing a circuit using this triple of gates: since φ cannot be detected by any experimental
equations, it cannot affect the classical input-output behavior of a quantum circuit built from these
superoperators. We also do not know whether T approximately equals T or its inverse T−1. Using
Hadamard and CNOTs cannot help distinguish these two cases, because they only differ in a minus sign
for the imaginary unit (something gates with real entries cannot pick up). However, precisely because
such a change is undetectable experimentally, we can just build our circuit assuming T is close to T ; if
it is close to T−1 instead, that will incur no observable differences in the input-output behavior of our
circuit, so for all intents and purposes we may just assume assume T is close to T .

In addition to the above result, van Dam et al. [161] also showed a number of other families of gates
to be robustly self-testable, and proved more general robustness results. In follow-up work, Magniez et
al. [121] study self-testing of quantum circuits together with measurement apparatuses and sources of
EPR-pairs, introducing notions of simulation and equivalence.

3.2 Self-testing protocols

In addition to quantum gates and circuits, a large area of application of quantum self-testing is in
multi-party quantum protocols. Here typically two or more parties share an entangled state on which
they operate locally. In the two-party case these are often EPR-pairs—or at least should be EPR-pairs.
Experimentalists often need to test that their apparatuses actually produce the required entangled state, or
at least something close to it, and that the local operations and measurements act as required. Unless we
somehow already have some other trusted quantum objects available, we are in the self-testing regime:
like in the previous section, we can only trust preparations of classical states and measurements in the
computational basis. We would like to test a quantum object by classically interacting with it, without
making assumptions about the measurement apparatuses, the states used, or even the dimension of the
Hilbert spaces that are involved.

Again, for concreteness we will focus on testing protocols for one specific example in the two-party
setting,14 namely the famous CHSH game [61]. This is defined as follows.

CHSH game. Alice and Bob receive uniformly distributed inputs x,y ∈ {0,1}, respectively.

14In the three-party setting, the most famous game is the GHZ game [80]. Colbeck [62] seems to have been the first to give a
self-testing result for this.
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They output a,b ∈ {0,1}, respectively. The players (equivalently, the protocol) win the game
if and only if the XOR of the outputs equals the AND of the inputs: a⊕b = xy.

Alice and Bob want to coordinate to maximize their probability15 of winning this game, without com-
munication between them. It is known that classical protocols can win with probability 0.75, but not
more, even when they use shared randomness. In contrast, the following quantum protocol P∗ wins the
game with probability cos(π/8)2 ≈ 0.854.16 It is defined in terms of the four single-qubit Pauli matrices,
which are

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

Standard protocol for CHSH. P∗ uses one EPR-pair

∣∣φ+
〉
=

1√
2
(|00〉+ |11〉)

as starting state. Depending on their inputs, Alice and Bob apply the following specific
±1-valued observables17: Alice measures X if x = 0, or Z if x = 1. She outputs 0 if her
measurement yields 1, and she outputs 1 if it yields −1. Bob measures the observable (X +
Z)/
√

2 if y = 0 and (X−Z)/
√

2 if y = 1, and outputs 0 or 1 accordingly.

Note that for ±1-valued observables A and B, 〈φ+|A⊗B|φ+〉= tr(ABT )/2 is the difference between the
probability that the two output bits are equal and the probability that the outputs are different. If xy = 0 a
protocol tries to get this difference close to 1, and if x = y = 1 it tries to get the difference close to −1. In
the above protocol P∗, the difference is 1/

√
2 if xy = 0, and −1/

√
2 if x = y = 1, so the sum of these 4

terms (negating the last one) equals 2
√

2. Tsirelson famously proved that this value of 2
√

2 is optimal
among all possible protocols [60], no matter how much entanglement they use; hence the corresponding
winning probability

1
2
+

1
2
√

2
= cos(π/8)2

is optimal as well.

Theorem 15 (Tsirelson [60]). Suppose Alice and Bob run a protocol for CHSH that starts with a shared
pure state |ψ〉, where Alice applies ±1-valued observables A0 or A1 depending on her input x, and Bob
applies ±1-valued observables B0 or B1 depending on y. Then

|〈ψ|(A0B0 +A0B1 +A1B0−A1B1)|ψ〉| ≤ 2
√

2 .

15This probability is taken over the input distribution as well as over the internal randomness of the protocol.
16This “Bell inequality violation” has been confirmed by many experiments, albeit with a few remaining experimental

“loopholes,” suggesting that Nature does not behave according to classical physics. See the recent survey by Brunner et al. [46]
for much more on such “nonlocal” behavior, where two spatially separated entangled players are correlated in ways that are
impossible for classical players.

17A±-valued observable A can be written as the difference A = P+−P− of two orthogonal projections that satisfy P++P− =
I. It corresponds to a projective measurement in a natural way, with outcome +1 corresponding to P+ and outcome −1
corresponding to P−. Note that such an A is both Hermitian and unitary, and hence A2 = I.
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For simplicity we abbreviate A⊗B to AB in the above statement as well as the rest of this section (and
A⊗ I to just A). The assumption that the starting state is pure and that Alice and Bob apply ±1-valued
observables is without loss of generality, so Tsirelson’s bound covers all possible quantum protocols.

Proof. Define C = A0B0 +A0B1 +A1B0−A1B1. Using that A2
x = B2

y = I, the square of C works out to

C2 = 4I +[A0,A1]⊗ [B1,B0] ,

where [A,B] = AB−BA denotes the commutator of two operators. Note that if ‖A‖,‖B‖ ≤ 1 then
‖ [A,B] ‖≤ 2. Hence, using Cauchy-Schwarz we get:

|〈ψ|C|ψ〉|2 ≤ 〈ψ|C2|ψ〉= 4+ 〈ψ|[A0,A1]⊗ [B1,B0]|ψ〉
= 4+ 〈ψ|([A0,A1]⊗ I) · (I⊗ [B1,B0])|ψ〉
≤ 4+ ‖ [A0,A1] ‖ · ‖ [B1,B0] ‖≤ 4+2 ·2 = 8 ,

which implies |〈ψ|C|ψ〉| ≤ 2
√

2.

There are many different protocols that achieve the optimal value 2
√

2 or something close to it.
For example, applying a local basis change to P∗ results in a different protocol that still achieves the
maximal value. How much freedom do we have in such optimal or near-optimal protocols for the CHSH
game? Surprisingly, this freedom is essentially limited to local basis transformations. Popescu and
Rohrlich [142] and Braunstein et al. [43] independently showed that any protocol that wins CHSH with
maximal probability needs to start with an EPR-pair, or something that can be turned into an EPR-pair
(possibly in tensor product with another state shared between Alice and Bob) using local isometries.18

However, as in the previous section, robustness is important: we expect that if a protocol wins the
CHSH game with close-to-maximal probability, then its entangled state must be close to an EPR-pair, and
its measurement operators must be in some sense close to those of the standard protocol. Such a robust
result was proved independently in [127, 128]19:

Theorem 16 ([127, 128]). Suppose Alice and Bob run a protocol for CHSH that starts with a shared pure
state |ψ〉, where Alice applies ±1-valued observables A0 or A1 depending on her input x, and Bob applies
±1-valued observables B0 or B1 depending on y. Suppose the protocol wins CHSH with probability at
least cos(π/8)2− ε . Define new operators for Alice and Bob, respectively:

X ′A = A0, Z′A = A1,

X ′B =
B0 +B1√

2
, Z′B =

B0−B1√
2

.

Then there exists a local isometry Φ = ΦA⊗ΦB and a pure state |junk〉 shared between Alice and Bob,
such that for all M,N ∈ {I,X ,Z} we have

‖Φ(M′AN′B|ψ〉)−|junk〉⊗MANB
∣∣φ+
〉
‖= O(

√
ε) ,

where, e. g., if M = X the notation M′A denotes the operator X ′A.
18The correct attribution of this result is not completely clear, see also the work of Summers and Werner [158] and

Tsirelson [159, p. 11].
19The earlier work of Mayers and Yao [123, 124] that started the area of self-testing of quantum states also had a protocol for

robustly self-testing EPR-pairs, albeit based on more than the CHSH game.
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In words, up to a local basis change and small errors depending on ε , |ψ〉 behaves like an EPR-pair
and X ′A,Z

′
A,X

′
B,Z

′
B behave like the standard Pauli operators X and Z for Alice and Bob, respectively,

applied to that EPR-pair. Note that this also implies that A0,A1,B0,B1 behave like the observables of the
standard protocol P∗. We give the proof of [127] here for the special case where ε = 0. This allows us to
describe the main ideas, without going into the technical but straightforward details needed to keep track
of the errors and approximations.

Proof for ε = 0. Consider the proof of Tsirelson’s bound (Theorem 15). If a protocol achieves the
maximum value 2

√
2, then the inequalities in the proof must be equalities. This implies |〈ψ|[A0,A1]|ψ〉|=

2 and hence A0 and A1 anti-commute on |ψ〉:

A0A1|ψ〉=−A1A0|ψ〉 .

Similarly |〈ψ|[B1,B0]|ψ〉|= 2, and hence B0 and B1 anti-commute on |ψ〉 as well:

B0B1|ψ〉=−B1B0|ψ〉 .

We list some properties of the operators X ′A,Z
′
A,X

′
B,Z

′
B that were defined in the statement of the

theorem. All are clearly Hermitian. On Alice’s side, X ′A and Z′A are unitary because A0 and A1 are. They
anti-commute on |ψ〉 because A0 and A1 do. On Bob’s side, X ′B and Z′B anti-commute. We cannot assume
X ′B and Z′B are unitary. However, since (X ′B)

2 = I +(B0B1 +B1B0)/2 and B0 and B1 anti-commute on
|ψ〉, we have (X ′B)

2|ψ〉= |ψ〉. Hence ‖ X ′B|ψ〉 ‖2= 〈ψ|(X ′B)2|ψ〉= 1, so X ′B preserves the norm of |ψ〉.
Similarly, Z′B preserves the norm of |ψ〉, as does X ′BZ′B.

We now want to show that X ′AX ′B|ψ〉= |ψ〉. First,

〈ψ|A0(B0 +B1)|ψ〉+ 〈ψ|A1(B0−B1)|ψ〉= 〈ψ|C|ψ〉= 2
√

2 . (3.1)

Second, by squaring the operator A0(B0 +B1) and using anti-commutativity of B0 and B1 on |ψ〉 we can
show 〈ψ|A0(B0 +B1)|ψ〉 ≤

√
2, and similarly 〈ψ|A1(B0−B1)|ψ〉 ≤

√
2. Combining with Eq. 3.1, it

follows that both terms equal
√

2. Then we have

〈ψ|X ′AX ′B|ψ〉=
1√
2
〈ψ|A0(B0 +B1)|ψ〉= 1 ,

hence X ′AX ′B|ψ〉= |ψ〉. Since X ′A is unitary and Hermitian it is self-inverse, which implies X ′A|ψ〉= X ′B|ψ〉.
A similar argument shows Z′AZ′B|ψ〉= |ψ〉 and Z′A|ψ〉= Z′B|ψ〉.

We now need to show that, after a local isometry, |ψ〉 behaves like an EPR-pair (tensored with some
“junk” state) and X ′A,Z

′
A,X

′
B,Z

′
B behave like XA,ZA,XB,ZB. Consider the dimension-increasing map on

states |φ〉 (in the same space as |ψ〉) that is described by Figure 1. It adds one auxiliary qubit for Alice
(at the top line of the figure) and one for Bob (at the bottom), both initially |0〉. Because all operators
involved preserve norm on all states involved, this can be extended to a local isometry Φ = ΦA⊗ΦB.

For convenience we will write the two auxiliary qubits on the right of the state, the first for Alice and
the second for Bob. Let M,N ∈ {I,X ,Z}. Following the state through the different steps of Figure 1, a
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|0〉 H • H •

|φ〉
Z′A X ′A

Z′B X ′B

|0〉 H • H •

Figure 1: Isometry for transforming a perfect CHSH protocol to the standard one.

straightforward calculation shows

Φ(M′AN′B|ψ〉) =
1
4
(I +Z′A)(I +Z′B)M

′
AN′B|ψ〉|00〉

+
1
4

X ′B(I +Z′A)(I−Z′B)M
′
AN′B|ψ〉|01〉

+
1
4

X ′A(I−Z′A)(I +Z′B)M
′
AN′B|ψ〉|10〉

+
1
4

X ′AX ′B(I−Z′A)(I−Z′B)M
′
AN′B|ψ〉|11〉 . (3.2)

First consider the case where M = N = I. Then the second term vanishes, because I|ψ〉= Z′AZ′B|ψ〉 and
Z′A|ψ〉= Z′B|ψ〉. Similarly the third term vanishes. The fourth term equals the first (except in the last two
qubits) because

X ′AX ′B(I−Z′A)(I−Z′B)|ψ〉= (I +Z′A)(I +Z′B)X
′
AX ′B|ψ〉

by anti-commutativity, and X ′AX ′B|ψ〉= |ψ〉. Hence we end up with

Φ(|ψ〉) =
(

1
2
√

2
(I +Z′A)(I +Z′B)|ψ〉

)
⊗ 1√

2
(|00〉+ |11〉) = |junk〉⊗

∣∣φ+
〉
,

where we defined
|junk〉 :=

1
2
√

2
(I +Z′A)(I +Z′B)|ψ〉 .

If MN = XX then the same proof applies, because X ′AX ′B|ψ〉= |ψ〉 and XAXB|φ+〉= |φ+〉. The same
holds if MN = ZZ.

Now consider the case MN = XZ. Looking at Eq. (3.2), the first term vanishes because

(I +Z′A)(I +Z′B)X
′
AZ′B|ψ〉= X ′A(I−Z′A)(I +Z′B)|ψ〉= 0 ,

using the anti-commutativity of X ′A and Z′A, and the fact that (I + Z′B)Z
′
B|ψ〉 = (I + Z′B)|ψ〉 (because

(Z′B)
2|ψ〉= I|ψ〉). Similarly the fourth term vanishes. For the second term we use

X ′B(I +Z′A)(I−Z′B)X
′
AZ′B|ψ〉= (I +Z′A)(I +Z′B)X

′
AX ′BZ′B|ψ〉

=−(I +Z′A)(I +Z′B)X
′
AX ′B|ψ〉=−(I +Z′A)(I +Z′B)|ψ〉 ,
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where we used X ′BZ′B|ψ〉=−Z′BX ′B|ψ〉, X ′AX ′B|ψ〉= |ψ〉, and (I +Z′B)Z
′
B|ψ〉= (I +Z′B)|ψ〉. We similarly

analyze the third term. We end up with

Φ(X ′AZ′B|ψ〉) =−
1
4
(I +Z′A)(I +Z′B)|ψ〉|01〉+ 1

4
(I +Z′A)(I +Z′B)|ψ〉|10〉

=
1

2
√

2
(I +Z′A)(I +Z′B)|ψ〉⊗

1√
2
(|10〉− |01〉) = |junk〉⊗XAZB

∣∣φ+
〉
.

For the other five possible M,N pairs, a similar calculation (starting from Eq. (3.2) and using the known
commutation and anti-commutation properties) works to establish the desired property:

Φ(M′AN′B|ψ〉) = |junk〉⊗MANB
∣∣φ+
〉
.

Accordingly, we can use this robust result to test whether a given protocol behaves essentially like P∗,
based only on classical-input output behavior: run it multiple times on uniformly distributed classical
input bits, observe the classical output bits, and see if the winning probability is close to the optimal value
cos(π/8)2. If so, then (up to local change of basis) the state must be close to an EPR-pair tensored with
some other “junk” state, and the behavior of the measurements must be close to the ones of the standard
CHSH protocol P∗.

There has been a lot more work along these lines. McKague et al. [127] give a more general
framework for bipartite robust self-testing that subsumes the CHSH inequality, the Mayers-Yao self-test
(simplifying [121]), as well as others. Yang and Navascués [170] give robust self-tests for any entangled
two-qubit states, not just maximally entangled ones; the noise-resistance was further improved in [25].
McKague [125, 126] and Miller and Shi [128] give results about self-testing of states shared by more
than two parties.

In some applications one needs to have many states that all behave like EPR-pairs, not just the one
EPR-pair that is needed for an optimal protocol for CHSH. Recently, Reichardt et al. [146] proved a
subtle robustness result for playing many instances of CHSH. Roughly, their result says: if a quantum
protocol wins a fraction of nearly cos(π/8)2 of a sequence of k given instances of the CHSH game,
then most blocks of m = kΩ(1) instances have the property that they start “essentially” (again, up to
local operations and small differences like in Theorem 16) from m EPR-pairs and run m independent
instances of the standard protocol P∗. With significant additional work it is possible to use this result to
devise methods that allow a classical system to “command” an untrusted quantum system, in the sense of
forcing that quantum system to either use essentially the states and operations you want it to use, or be
detected if it deviates too much from those states and operations. Such control enables various kinds of
device-independent quantum cryptography, as well as the ability to offload general quantum computation
to untrusted devices.

4 Quantum testing of quantum properties: States

In the third part of this survey we discuss quantum testers for quantum properties. The first decision
we have to take in this setting is how the quantum object which we wish to test is presented to us. The
two options are a quantum presentation (i. e., we are given access to the object as a black box, which
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can be used in a quantum algorithm), or a classical presentation (i. e., we are given an efficient classical
description of the object, such as a quantum circuit). We concentrate on the former option (Sections 4–5),
as this seems to be the most natural generalization of ideas from classical property testing. However, in
Section 6 we also discuss the latter option, which turns out to be important in quantum computational
complexity.

Our focus in this part of the survey is on quantum tests for quantum properties which generalize
the idea of classical property testing. That is, tests which are designed to distinguish quantum states
(or operations) with some property from those far from having that property, given access to the state
(or operation) as a black box. We also mention here two related and well-studied areas elsewhere in
quantum information theory. The first is quantum state discrimination, which can be seen as a quantum
generalization of classical hypothesis testing. The archetypal problem in this setting is as follows: given
the ability to create copies of an unknown quantum state ρ picked from a known set S of quantum states,
identify ρ with minimal probability of error. Some authors use the term “quantum hypothesis testing” for
this problem [55]; others reserve this term for the case |S|= 2, where precise results have been obtained
relating the optimal error probability to the number of copies of ρ consumed, and trade-offs between
different kinds of error have been determined [22]. See the surveys [27, 55] for detailed reviews of
quantum state discrimination. The second area is the question of directly estimating some quantity of
interest about a completely unknown quantum state ρ , given access to multiple copies of the state, without
performing full tomography. Results of this form include direct estimation of the spectrum of ρ [109],
estimation of polynomials in the entries of ρ [45], and estimation of quantities related to entanglement
(e. g., [83]).

We begin our discussion of quantum properties by considering properties of quantum states, first pure
states and then mixed states.

4.1 Pure states

A pure state |ψ〉 of a d-dimensional quantum system is described by a d-dimensional complex unit vector
(technically, a ray; that is, eiθ |ψ〉 is equivalent to |ψ〉 for all real θ ). A property of d-dimensional pure
quantum states is therefore a set P ⊆ Cd . One can naturally generalize this to properties of pairs of
quantum states, where P⊆ Cd×Cd , etc.

There is a natural measure of distance between quantum states |ψ〉 and |φ〉: the trace distance

D(|ψ〉, |φ〉) :=
1
2
‖|ψ〉〈ψ|− |φ〉〈φ |‖1 =

√
1−|〈ψ|φ〉|2. (4.1)

Here, as in Section 3.1, ‖ · ‖1 is the trace norm (Schatten 1-norm) ‖M‖1 := tr(|M|). Given a state
promised to be either |ψ〉 or |φ〉, with equal probability of each, the optimal probability of determining
via a measurement which state we have is exactly (1+D(|ψ〉, |φ〉))/2 [94, 134]. We therefore say that
|ψ〉 is ε-close to having property P if

D(|ψ〉,P) := inf
|φ〉∈P

D(|ψ〉, |φ〉)≤ ε,

and similarly that |ψ〉 is ε-far from having property P if D(|ψ〉,P) ≥ ε . If |ψ〉 is ε-close to having
property P, there is no hope of certifying that |ψ〉 /∈ P with worst-case bias larger than ε , given access to
only one copy of |ψ〉.
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The complexity of algorithms for testing pure quantum states is measured by the number of copies of
the test state |ψ〉 required to distinguish between the two cases that (a) |ψ〉 ∈ P, or (b) |ψ〉 is ε-far away
from having property P. We therefore say that P can be ε-tested with q copies if there exists a quantum
algorithm which uses q copies of the input state to distinguish between these two cases, and fails with
probability at most 1/3 on any input. As with classical property testers, we say that a tester has perfect
completeness if it accepts every state in P with certainty. Crucially, we look for algorithms where the
number of copies used scales only in terms of ε , and there is no dependence on the dimension d, making
this a fair analog of the classical concept. If we cannot find such an algorithm, we attempt to minimize
the dependence on d.

On the other hand, if we do not care about the dependence on d, any (even infinite) property P⊆ Cd

can be tested using O(d/ε2) copies of the input state |ψ〉; it suffices to obtain an estimate |ψ ′〉 such that
D(|ψ ′〉, |ψ〉)< ε/2, and accept if and only if D(|ψ ′〉,P)≤ ε/2. In order to produce such an estimate one
can use a procedure known as quantum state estimation, which needs O(d/ε2) copies of |ψ〉 to achieve
the required accuracy with success probability at least 2/3 [47].

4.1.1 Equality

The first property we consider is extremely basic, but a useful building block for more complicated
protocols: whether the input state is equal to some fixed state. We say that a state |ψ〉 satisfies the
Equality to |φ〉 property if |ψ〉 = eiθ |φ〉 for some real θ , so P = {eiθ |φ〉 : θ ∈ R}; it is necessary
to allow an arbitrary phase θ in the definition of this property, as |ψ〉 cannot be distinguished from
eiθ |ψ〉 by any measurement. A natural test for Equality to |φ〉 is simply to perform the measurement
{|φ〉〈φ |, I−|φ〉〈φ |} on |ψ〉, and accept if and only if the first outcome is obtained. The probability of
acceptance is precisely |〈ψ|φ〉|2, so if |ψ〉 satisfies the property, the test accepts with certainty. On the
other hand, if D(|ψ〉, |φ〉) = ε , the test rejects with probability 1−|〈ψ|φ〉|2 = ε2. Via repetition, we find
that for any |φ〉, Equality to |φ〉 can be tested with O(1/ε2) copies.

A matching lower bound follows from considering the special case where the input state is promised
to be either |φ〉 or some state |φ ′〉 such that D(|φ〉, |φ ′〉) = ε , with equal probability of each. Then
any test which uses k copies to test whether the input is equal to |φ〉 is equivalent to a procedure
which discriminates between |φ〉⊗k and |φ ′〉⊗k, which has success probability upper-bounded by (1+
D(|ψ〉⊗k, |φ〉⊗k))/2. Using the definition (4.1) of the trace distance, we require k = Ω(1/ε2) to achieve
success probability 2/3. This same argument in fact shows that any non-trivial property of pure states
requires Ω(1/ε2) copies to be tested.

We remark that testing equality to a fixed state immediately generalizes to the problem of testing
whether |ψ〉 ∈ Cd is contained in a known subspace S ⊆ Cd . Here the prescription is to perform the
measurement {ΠS, I−ΠS} O(1/ε2) times, where ΠS is the projector onto S, and accept if and only if the
first outcome is obtained every time. For example, this allows the property Permutation Invariance to
be tested efficiently, where |ψ〉 ∈ (Cd)⊗n satisfies the property if it is invariant under any permutation
of the n subsystems. As |ψ〉 is permutation-invariant if and only if it is contained in the symmetric
subspace of (Cd)⊗n, projecting onto this subspace gives an efficient test for this property. This procedure,
which is known as symmetrization, has been studied in the context of quantum fault-tolerance and can be
performed efficiently [26]; see Section 4.2.2 below for a description of how this can be achieved via the
powerful primitive of generalized phase estimation.
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Another immediate generalization of Equality to |φ〉 is the question of testing whether two unknown
states are the same. We say that a pair of states |ψ〉, |φ〉 satisfies the Equality property if |φ〉= eiθ |ψ〉
for some real θ , so now the property is P= {(|ψ〉,eiθ |ψ〉) : |φ〉 is a pure state,θ ∈ R}. In order to test
this property, we will use a simple but important procedure known as the swap test. This was used
by Buhrman et al. [48] to demonstrate an exponential separation between the quantum and classical
models of simultaneous message passing (SMP) communication complexity, and has since become a
standard tool in quantum algorithm design. In the test, we take two (possibly mixed20) states ρ , σ as
input and attach an ancilla qubit in state |0〉. We then apply a Hadamard gate to the ancilla, followed by
a controlled-SWAP gate (controlled on the ancilla), and another Hadamard gate. We then measure the
ancilla qubit and accept if the answer is 0. This procedure is illustrated by the circuit in Figure 2.

|0〉 H • H

ρ

SWAP
σ

Figure 2: The swap test.

One can show [48, 112] that the swap test accepts with probability

1
2
+

1
2

tr(ρ σ),

which for pure states |ψ〉, |φ〉 is equal to (1+ |〈ψ|φ〉|2)/2 = 1−D(|ψ〉, |φ〉)2/2. In particular, if this test
is applied to two pure states which satisfy the Equality property then the test accepts with certainty. On
the other hand, if the states are ε-far away from equal, then by definition

inf
|ξ 〉

D(|ψ〉|φ〉, |ξ 〉⊗2)≥ ε.

But
inf
|ξ 〉

D(|ψ〉|φ〉, |ξ 〉⊗2) =
√

1− sup
|ξ 〉
|〈ψ|ξ 〉〈φ |ξ 〉|2 ≤

√
1−|〈ψ|φ〉|2 = D(|ψ〉, |φ〉),

where the inequality follows by taking |ξ 〉 = |φ〉. Thus the test rejects with probability at least ε2/2,
so O(1/ε2) repetitions suffice to detect states ε-far away from equal with constant probability; in other
words, Equality can be tested with O(1/ε2) copies. The swap test is in fact optimal among all testers for
this property which have perfect completeness and use one copy of each of the input states. To see this,
observe that the swap test is precisely the operation of projecting onto the symmetric subspace of (Cd)⊗2.
Any tester which accepts every pair of equal states |ψ〉⊗2 must accept every state in this subspace, so the
swap test is the most refined test of this type. One can generalize this to prove that the swap test is also
optimal among tests which are allowed two-sided error, in the sense that it achieves the largest possible
gap between the acceptance probabilities in equal and orthogonal instances [105].

20See Section 4.2 for more about mixed states and a formal definition.
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The property of Equality can be generalized further, to the question of testing whether n pure states
|ψ1〉, . . . , |ψn〉 are all equal. The natural tester for this property, generalizing the swap test, is to project
onto the symmetric subspace of (Cd)⊗n, i. e., to perform symmetrization [26]. Kada et al. [105] have
studied this procedure under the name of the permutation test, and show that the test accepts n-tuples
where at least one pair of states is orthogonal with probability at most 1/n, and that this is optimal among
tests with perfect completeness. No explicit bounds appear to be known on this tester’s parameters if the
promise is relaxed, for example to specify that at least one pair of states has overlap at most ε . Kada et
al. also study a related tester, called the circle test, and prove that this tester is also optimal for prime
n [105]. This procedure is somewhat simpler as it only involves taking a quantum Fourier transform over
Zn, rather than Sn.

4.1.2 Productness

A pure state |ψ〉 ∈ (Cd)⊗n of n d-dimensional subsystems is said to be product (i. e., satisfy the Prod-
uct property) if it can be written as a tensor product |ψ〉 = |ψ1〉|ψ2〉 . . . |ψn〉 for some local states
|ψ1〉, . . . , |ψn〉 ∈ Cd . A state which is not product is called entangled. Entanglement is a ubiquitous
phenomenon in quantum information theory (see for example [98] for an extensive review), so the
property of being a product state is an obvious target to test.

Given just one copy of |ψ〉, our ability to test whether it is product is very limited. Indeed, as every
quantum state can be written as a linear combination of product states, any tester which accepts all
product states with certainty must accept all states with certainty. However, if we are given two copies of
|ψ〉, there are non-trivial tests we can perform. In particular, consider the following procedure, which
was first discussed by Mintert et al. [129] and is called the product test [91]: apply the swap test across
each corresponding pair of subsystems of |ψ〉⊗2, and accept if and only if all of the tests accept. The
overall procedure is illustrated in Figure 3.

1

1

2

2

3

3

...

...
n

n|ψ1〉

|ψ2〉

Figure 3: Schematic of the product test applied to an n-partite state |ψ〉. The swap test (vertical boxes) is
applied to the n pairs of corresponding subsystems of two copies of |ψ〉 (horizontal boxes).

If |ψ〉 is indeed product, then all of the swap tests will accept. On the other hand, if |ψ〉 is far from
product, the intuition is that the entanglement in |ψ〉 will cause at least some of the tests to reject with
fairly high probability. This intuition can be formalized to give the following result.

Theorem 17 (Harrow and Montanaro [91]). If |ψ〉 is ε-far from product, the product test rejects with
probability Ω(ε2).
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Thus the property of productness can be tested with O(1/ε2) copies. We will not give the full, and
somewhat technical, proof of Theorem 17 here, but merely sketch the proof technique; see [91] for details.

Proof sketch. Let Ptest(|ψ〉) denote the probability of the product test accepting when applied to two
copies of |ψ〉, and let the distance of |ψ〉 from the nearest product state be ε . The proof is split into two
parts, depending on whether ε is low or high. For S⊆ [n], let ψS be the mixed state obtained by tracing
out (discarding) the qubits not in S. Then the starting point is the observation that

Ptest(|ψ〉) =
1
2n ∑

S⊆[n]
tr(ψ2

S ). (4.2)

The quantity tr(ψ2
S ) measures the purity of the reduced state ψS, which can be seen as a measure of the

entanglement of |ψ〉 across the bipartition (S,Sc); if |ψ〉 were product across this bipartition, ψS would be
pure and tr(ψ2

S ) would equal 1. By (4.2), the probability that the test passes is equal to the average purity
of the reduced state obtained by a random bipartition of the n systems. Writing |ψ〉=

√
1− ε2|0n〉+ε|φ〉

(without loss of generality), for some product state |0n〉 and arbitrary orthogonal state |φ〉, Eq. (4.2) allows
an explicit expression for tr(ψ2

S ) in terms of ε and |φ〉 to be obtained. Expanding |φ〉=∑x∈{0,...,d−1}n αx|x〉
and summing over S, we get an expression containing terms of the form ∑x∈{0,...,d−1}n |αx|2c|x| for some
c < 1, where |x| := |{i : xi 6= 0}|. In order to obtain a non-trivial bound from this, the final step of the
first part of the proof is to use the fact that |0n〉 is the closest product state to |ψ〉 to argue that |φ〉 cannot
have any amplitude on basis states |x〉 such that |x| ≤ 1. A bound is eventually obtained that is applicable
when ε is small, namely that

Ptest(|ψ〉)≤ 1− ε
2 + ε

3 + ε
4.

In the case where ε is large, this does not yet give a useful upper bound, so the second part of the proof
finds a constant upper bound on Ptest(|ψ〉). This quantity can be shown to be upper bounded by the
probability that a relaxed test, for being product across some partition of the n subsystems into k ≤ n
parties, passes. If |ψ〉 is far from product across the n subsystems, the proof shows that one can find a
partition into k parties (for some k ≤ n) such that the distance from the closest product state (with respect
to this partition) falls into the regime where the first part of the proof works. The eventual result is that
if ε2 ≥ 11/32 > 0.343, then Ptest(|ψ〉)≤ 501/512 < 0.979; combining these two bounds completes the
proof.

We mention two implications of Theorem 17. First, by the characterization (4.2), the content of
Theorem 17 can be understood as: if a pure state of n systems is still fairly pure on average after discarding
a random subset of the systems, it must in fact have been close to a product state in the first place. In the
classical property testing literature, one of the motivations for analysing tests for combinatorial properties
is to obtain some insight into the structure of the property being tested; Theorem 17 can be seen as
achieving something similar in a quantum setting.

Second, by allowing one to efficiently certify productness given two copies of |ψ〉, the product test
can be used to show that quantum Merlin-Arthur proof systems with multiple provers can be simulated
efficiently by two provers, or in complexity-theoretic terminology that QMA(k) =QMA(2) [91]. Roughly
speaking, to simulate a k-Merlin protocol, one can simply ask two Merlins to provide identical copies
of the k-Merlin proofs, and perform the product test to ensure that they are indeed product states. Since
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the product test uses only two copies of the state, two Merlins suffice. Via a previous result of Aaronson
et al. [5] giving a multiple-prover quantum proof system for 3-SAT, this in turn allows one to prove
hardness of various tasks in quantum information theory, conditioned on the hardness of 3-SAT [91].
This is again analogous to the classical literature, where efficient property testers are used as components
in hardness-of-approximation results.

Although the product test itself is natural, the detailed proof of Theorem 17 given in [91] is a lengthy
case analysis which does not provide much intuition and gives suboptimal constants. For example, the
lower bound obtained on the probability of the product test rejecting does not increase monotonically
with ε , which presumably should be the case for an optimal bound. We therefore highlight the following
open question.

Question 5. Can the analysis of the product test be improved?

4.1.3 Arbitrary finite sets

The following algorithm of Wang [164] gives a tester for any finite property P⊂ Cd (this is similar to
the result for any finite classical property mentioned at the end of Section 2.2.2). The tester cannot
necessarily be implemented time-efficiently in general. Given access to copies of an input state |ψ〉, the
tester proceeds as follows:

1. Create the state |ψ〉⊗T , for some T to be determined.

2. Let S = span{|φ〉⊗T : |φ〉 ∈ P}. Perform the measurement {ΠS, I−ΠS}, where ΠS is the projector
onto S, and accept if the first outcome is obtained. Otherwise, reject.

Theorem 18 (Wang [164]). Let P⊂ Cd be such that min|φ〉6=|φ ′〉∈P D(|φ〉, |φ ′〉) = δ . Then it suffices to
take T = O(log |P|max{ε−2,δ−2}) to obtain a tester which accepts every state in P with certainty, and
rejects every state |ψ〉 such that D(|ψ〉,P)≥ ε with probability at least 2/3.

Observe that the dependence on |P| is only logarithmic. The intuition behind Theorem 18 is that, if
all the states in P have large pairwise distances, {|φ〉⊗T} is an approximately orthonormal basis for S, so
if |ψ〉 is ε-far from P, the probability of incorrectly accepting is

〈ψ|⊗T
ΠS|ψ〉⊗T ≈ ∑

|φ〉∈P
|〈ψ|φ〉|2T ≤ |P|(1− ε

2)T ,

which is sufficiently small when T = O((log |P|)/ε2). Wang describes an application of Theorem 18 to
testing the set of permutations of n qubits using O((n logn)/ε2) copies [164]. However, the dependence
of the theorem on δ seems to limit its applicability. It is an interesting question whether this dependence
can be improved or removed, either by better analysis of the above tester or by designing a new tester.

Question 6. Does there exist a tester for arbitrary finite properties P⊂Cd which uses polylog |P| copies,
and whose parameters have no dependence on min|φ〉6=|φ ′〉∈P D(|φ〉, |φ ′〉)?

The above tester is a general algorithm for testing any property P. For some properties P it is possible
to prove better bounds on the performance of this algorithm than Theorem 18 would give, or prove
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bounds with fewer preconditions. For example, the product test is a particular case of this algorithm (with
T = 2), and Theorem 17 gives non-trivial bounds on its performance, even though it is applied to the
infinite set of product states. We also remark that an alternative algorithm to the above tester would be to
produce |ψ〉⊗T , and for each |φ〉 ∈ P in turn, perform the measurement {|φ〉〈φ |⊗T , I−|φ〉〈φ |⊗T}, and
accept if and only if the first outcome is obtained from any measurement. This algorithm would achieve
similar scaling in terms of ε and δ , as can be shown using a “quantum union bound” argument. However,
this algorithm would not have perfect completeness. The quantum union bound is a noncommutative
generalisation of the standard union bound from probability theory. Given a sequence of measurements
performed one after the other on some state, and an upper bound on the probability that each measurement
would accept the original state, the quantum union bound gives a limit on the probability that any of the
measurements in the sequence accepts. A sequence of works [168, 1, 138, 153, 167, 72] have proven
progressively stronger bounds of this form.

4.1.4 Open questions

There are a number of interesting sets of pure states for which an efficient tester is not known. One such
set is the stabilizer states. Recall that the Pauli matrices on one qubit are defined to be the set

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

They form a basis for the space of single-qubit linear operators, and by tensoring form a basis for the
space of linear operators on n qubits; for s ∈ {I,X ,Y,Z}n, we write σs for the corresponding operator on
n qubits. We call each such tensor product operator a (n-qubit) Pauli matrix, and use Pn to denote the set
of all n-qubit Pauli matrices, together with phases ±1, ±i, which forms a group under multiplication.

A state |ψ〉 of n qubits is said to be a stabilizer state if there exists a maximal Abelian subgroup
G of Pn such that U |ψ〉 = |ψ〉 for all U ∈ G. Stabilizer states are important in the study of quantum
error-correction [79] and measurement-based quantum computation [143], as well as many other areas of
quantum information. It is known that, given access to copies of an unknown stabilizer state |ψ〉 of n
qubits, |ψ〉 can be learned with O(n) copies [6]; there is a matching Ω(n) lower bound following from an
information-theoretic argument [96]. However, it might be possible to test whether |ψ〉 is a stabilizer
state using far fewer copies.

Question 7. Is there a tester for the property of being a stabilizer state whose parameters do not depend
on the number of qubits n?

Other sets of pure states for which it would be interesting to have an efficient tester are matrix product
states (see, e. g., [140]) and states of low Schmidt rank, or with low complexity with respect to some other
entanglement measure [83]. See Section 4.2 below for evidence for a lower bound on the complexity of
testing the Schmidt rank.

Another interesting, and as yet largely unexplored, direction for future research is testing properties
of quantum states in a distributed setting. Here we imagine that two parties, Alice and Bob, each hold part
of one copy of a large unknown state |ψ〉. Their goal is to determine whether |ψ〉 satisfies some property
while exchanging only a small number of qubits; in particular, Alice cannot just send her half of the state
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to Bob. Our normal complexity measure “number of copies consumed” is thus replaced with “number
of qubits sent.” Aharonov et al. [12] recently showed that the d-dimensional maximally entangled state

1√
d ∑

d
i=1 |i〉|i〉 can be tested up to accuracy ε by communicating only O(log1/ε) qubits. There are many

other properties where the question of existence of communication-efficient testers remains open.

4.2 Mixed states

A mixed state ρ is a convex combination of pure states. Mixed states are described by density matrices,
which are positive semidefinite matrices with unit trace; we let B(Cd) denote the set of d-dimensional
density matrices. The concept of property testing can easily be generalized from pure states to mixed
states. We retain the same, natural distance measure

D(ρ,σ) :=
1
2
‖ρ−σ‖1,

which is called the trace distance between ρ and σ . Note that for classical probability distributions (i. e.,
diagonal density matrices) this is just the total variation distance. As before, say that ρ is ε-far from
having property P⊆B(Cd) if

D(ρ,P) := inf
σ∈P

D(ρ,σ)≥ ε,

and ε-close to having property P if D(ρ,P)≤ ε . Another important distance measure for mixed states
is the fidelity, which is defined as F(ρ,σ) := ‖√ρ

√
σ‖1, where

√
ρ denotes the positive semidefinite

square root of the operator ρ . For any mixed state ρ and pure state |ψ〉, F(ρ, |ψ〉〈ψ|) =
√
〈ψ|ρ|ψ〉. The

fidelity and trace distance are related by the inequalities [134, Eq. 9.110]

1−F(ρ,σ)≤ D(ρ,σ)≤
√

1−F(ρ,σ)2. (4.3)

In a mixed-state property testing scenario, we are given k copies of ρ , for some unknown ρ , and asked to
perform a measurement on ρ⊗k to determine whether ρ ∈ P, or ρ is ε-far away from P.

Similarly to the case of pure states, any property P ⊆ B(Cd) can be tested with O(d2/ε2) copies.
To distinguish between the two cases that ρ ∈ P or ρ is ε-far from P, it suffices to use an estimate ρ̃

such that D(ρ̃,ρ)< ε/2, and accept if and only if D(ρ̃,P)≤ ε/2. Producing such an estimate can be
achieved using quantum state tomography [139, 134]; in order to achieve the required accuracy with
success probability 2/3, O(d2/ε2) copies suffice [86, 137]. If one knows in advance that ρ is rank r, this
bound can be improved to O(rd/ε2) [86, 137].

Some properties of mixed states can be tested significantly more efficiently than this general upper
bound. A simple example is the property Purity, where ρ satisfies the property if and only if it is a pure
state. A natural way to test purity is to apply the swap test (Figure 2) to two copies of ρ . This accepts
with probability (1+ tr(ρ2))/2, which is equal to 1 if and only if ρ is pure. On the other hand, if we let
ρ = ∑i λi|ψi〉〈ψi| be the eigendecomposition of ρ , where eigenvalues are listed in non-increasing order, a
closest pure state to ρ is |ψ1〉. If ρ is ε-far away from pure, then λ1 ≤ 1− ε . Note that

tr(ρ2) = ∑
i

λ
2
i ≤max

i
λi ∑

j
λ j = λ1.
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Thus the test accepts with probability at most 1− ε/2, implying that Purity can be tested with O(1/ε)
copies of ρ .

On the other hand, consider the “dual” property of Mixedness, where ρ ∈B(Cd) satisfies the property
if and only if it is the maximally mixed state I/d. A strong lower bound has been shown by Childs et
al. [56] on the number of copies required to test this property.

Theorem 19 (Childs et al. [56]). Let d and r be integers such that r strictly divides d. Any algorithm
which distinguishes, with probability of success at least 2/3, between the two cases that ρ = I/d or ρ is
maximally mixed on a uniformly random subspace of dimension r must use Ω(r) copies of ρ . Further,
there exists an algorithm which solves this problem using O(r) copies.

Childs et al. call the problem which they consider the quantum collision problem. To see how their
result can be applied to Mixedness, consider the space of n qubits, whose dimension is d = 2n. As a state
ρ which is maximally mixed on a dimension-r subspace of C2n

satisfies D(ρ, I/2n) = 1− r/2n, taking
r = 2n−1 implies that any algorithm distinguishing between the cases that ρ = I/2n and ρ is 1/2-far
from I/2n must use Ω(2n) copies of ρ .21 This result also puts strong lower bounds on a number of other
property testing problems which one might wish to solve. For example, consider the following three
properties:

• Equality of pairs of mixed states, where the pair (ρ,σ) satisfies the property if ρ = σ . This can
be seen as the quantum generalization of the classical question of testing whether two probability
distributions on d elements are equal or ε-far from equal (with respect to the total variation distance),
given access to samples from the distributions. A sublinear tester for the classical problem has been
given by Batu et al. [30], and recently improved by Chan et al. [54]; for constant ε the tester uses
O(d2/3) samples. By fixing σ = I/d, the result of [56] implies that the quantum generalization of
this problem is more difficult: it requires at least Ω(d) “samples” (i. e., copies of the states).

• Whether a mixed state ρ has rank at most r. Theorem 19 immediately implies that this requires
Ω(r) copies of ρ , which has an interesting implication for testing pure states. Recall that a bipartite
state |ψ〉 on systems AB is said to have Schmidt rank r if it can be written as |ψ〉= ∑

r
i=1
√

λi|vi〉|wi〉
for pairwise orthonormal sets of states {|vi〉}, {|wi〉} and non-negative λi. If one looks only at
the A subsystem, the rank of the reduced state is precisely the Schmidt rank of |ψ〉. Therefore,
Theorem 19 implies that any algorithm which tests whether a pure state |ψ〉 has Schmidt rank r by
producing k copies of |ψ〉 and acting only on the first subsystems A1, . . . ,Ak of |ψ〉⊗k must satisfy
k = Ω(r). This bound does not apply immediately to general algorithms acting on both the A and
B subsystems, leaving the complexity of testing the Schmidt rank open.

• Separability of mixed states. A bipartite quantum state ρ ∈B((Cd)⊗2) is said to be separable if it
can be written as a convex combination of product states, and is said to be entangled otherwise.
Given a classical description of a d-dimensional mixed state as input, determining separability up
to accuracy which is inversely polynomial in d is known to be NP-hard [84, 73], and there is some
evidence for intractability of the problem even up to constant accuracy [91]. This does not preclude

21Very recently, O’Donnell and Wright [136] strengthened this result; among other things they obtained a tight dependence
on ε .
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the existence of a tester for separability which is efficient in terms of the number of copies of the
input state ρ used; however, Theorem 19 can be used to show that such a tester cannot exist.

The idea is to show that the maximally mixed state on a random subspace of dimension r is far
from separable, if r is picked suitably. This can be achieved by combining some previously known
results. The entanglement of formation of a bipartite state ρ on systems AB, is defined by

EF(ρ) = min
∑i pi|ψi〉〈ψi|=ρ

∑
i

pi S(trB(|ψi〉〈ψi|)),

where S(ρ) =−tr(ρ log2 ρ) is the von Neumann entropy. Of course, if ρ is separable, EF(ρ) = 0.
Let ρ be the maximally mixed state on a random subspace of Cd⊗Cd of dimension r = bcd2c, for
some fixed c ∈ (0,1). Hayden et al. [92] have shown that, for small enough c > 0, there exists a
universal constant C > 0 such that EF(ρ)≥C log2 d, except with probability exponentially small
in d. Also, Nielsen [133] has shown a continuity property for the entanglement of formation:

EF(ρ)−EF(σ)≤ 18(log2 d)
√

1−F(ρ,σ)+2(log2 e)/e.

Combining these two properties, and relating the fidelity to the trace distance using (4.3), we have
that ρ is distance Ω(1) from the set of separable states with high probability. On the other hand,
the maximally mixed state I/d2 is clearly separable. Therefore, any tester which distinguishes
separable states from states a constant distance from any separable state can be used to distinguish
the maximally mixed state from a random dimension-r subspace; by Theorem 19, this task requires
Ω(r) = Ω(d2) copies of the input state.

We remark that the theory of entanglement witnesses takes an alternative approach to the direct
detection of entanglement (see for example [83, 98] for extensive reviews). An entanglement witness for
a state ρ is an observable corresponding to a hyperplane separating ρ from the convex set of separable
states; measuring the observable allows one to certify that ρ is entangled. Each such witness will only
be useful for certain entangled states, however, so this approach does not provide a means of certifying
entanglement of a completely unknown state ρ .

There is a gap between the best known lower and upper bounds for testing the above three properties.
We therefore highlight the following open question:

Question 8. What is the complexity of testing Equality, Separability, and Rank at most r?

4.2.1 Testing equality to a fixed pure state

We have seen that testing whether ρ ∈B(Cd) is the maximally mixed state I/d can require Ω(d) copies
of ρ . By contrast, testing whether ρ is a fixed pure state |ψ〉〈ψ| is easy: the obvious test is to perform
the measurement {|ψ〉〈ψ|, I−|ψ〉〈ψ|}, and to accept if the first outcome is returned. The probability of
acceptance is 〈ψ|ρ|ψ〉, which is upper bounded by 1−D(ρ, |ψ〉〈ψ|)2 by (4.3), so this property can be
tested with O(1/ε2) copies of ρ .

However, there is a more interesting related question of relevance to experimentalists. Imagine we
have some experimental apparatus which is claimed to produce a state |φ〉 of n qubits, and we would like
to certify this fact. In this setting, the above test does not seem to make sense; being able to measure
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|φ〉 is essentially precisely what we wish to certify! We further imagine that n is too large for full state
tomography to be efficient. In order to solve this self-certification problem, we would therefore like a
procedure which makes a small number of measurements, can easily be implemented experimentally,
and certifies that the state produced is approximately equal to |φ〉. This question has been considered
by da Silva et al. [155], and independently Flammia and Liu [69], who show that certain states |φ〉 can
be certified using significantly fewer copies of |φ〉 than would be required for full tomography, and
indeed that any state |φ〉 can be certified using quadratically fewer copies (O(2n) rather than O(22n)).
The measurements used are also simple: Pauli measurements.

The Pauli matrices {σs} on n qubits form a basis for the space of n-qubit linear operators and satisfy
tr(σsσt) = 2nδst . So any state ρ ∈B(C2n

) can be expanded as

ρ = ∑
s∈{I,X ,Y,Z}n

ρ̂sσs

for some real coefficients ρ̂s = tr(ρσs)/2n. Writing φ := |φ〉〈φ | for conciseness, the squared fidelity
between |φ〉 and ρ is

〈φ |ρ|φ〉= tr(ρφ) = 2n
∑

s∈{I,X ,Y,Z}n

ρ̂sφ̂s .

The works [155, 69] propose the following scheme. First, pick s ∈ {I,X ,Y,Z}n with probability 2nφ̂ 2
s ;

orthonormality of the Pauli matrices implies that this is indeed a valid probability distribution. Then
repeatedly measure copies of ρ in the eigenbasis of σs, and take the average of the eigenvalues corre-
sponding to the measurement results to produce an estimate ρ̃s of 2nρ̂s = tr(ρσs). Finally, output ρ̃s/φ̂s

as our guess for the squared fidelity. The expectation of ρ̃s is precisely tr(ρσs), and if we assume that this
estimate is exact (i. e., ρ̃s = tr(ρσs)), the expected value of the output is

∑
s∈{I,X ,Y,Z}n

(2n
φ̂

2
s )

ρ̂s

φ̂s
= tr(ρφ) .

Of course, in general we cannot produce an exact estimate without using an infinite number of copies
of ρ . However, to estimate the fidelity up to constant additive error with constant success probability,
it suffices to use a finite number of copies. The number of copies required turns out to depend on the
quantity mins,φ̂s 6=0 |φ̂s|; for certain classes of states |φ〉 (such as stabilizer states), the number of copies
used does not depend on n.

4.2.2 Unitarily invariant properties

Generalizing the properties Purity and Mixedness, one can consider properties P of mixed quantum
states which are unitarily invariant, in the following sense: If ρ ∈ P, then (UρU†) ∈ P for all U ∈U(d),
where U(d) denotes the unitary group in d dimensions. Observe that this implies that, if ρ is ε-far from
P, then so is UρU†, for all ε and all U ∈U(d). For any ρ , D(ρ,P) must necessarily be a symmetric
function of the spectrum of ρ .

We can see unitarily invariant properties as quantum analogs of symmetric properties of classical
probability distributions. Quite recently, it has been shown that a particular “canonical” classical tester
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is close to optimal for all such symmetric properties which satisfy certain continuity constraints [160].
This has allowed strong bounds to be proven on the complexity of testing properties such as equality
of probability distributions, and distinguishing high-entropy from low-entropy distributions. We now
discuss an analogous “canonical tester” for unitarily invariant properties.

In order to take advantage of the unitary symmetry, one can use a concept known as Schur-Weyl
duality. We will only briefly summarize this beautiful theory here, and sketch the consequences for
property testing; for much more detailed introductions, see the theses [59, 90]. Schur-Weyl duality
implies that any linear operator M on (Cd)⊗k which commutes with permutations of the k subsystems,
and also with local unitaries on each subsystem (i. e., U⊗kM(U−1)⊗k = M for all U ∈U(d)) can be
written as M = ∑λ`k αλ Pλ for some coefficients αλ and projectors Pλ , where the sum is over partitions λ

of k (e. g., the partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1)). Each partition λ corresponds to
an irreducible representation (irrep) of Sk, the symmetric group on k elements; one important irrep is the
trivial irrep (k) which maps π 7→ 1 for all π ∈ Sk. The operators Pλ are defined by

Pλ :=
dλ

k! ∑
π∈Sk

χλ (π)Uπ .

In the above expression, dλ is the dimension of the corresponding irrep Vλ of Sk, which associates a
dλ -dimensional square matrix with each permutation π ∈ Sk. Then χλ is the corresponding character
tr(Vλ ) and Uπ is the operator which acts by permuting k d-dimensional systems according to π:

Uπ |i1〉 . . . |ik〉=
∣∣∣iπ−1(1)

〉
. . .
∣∣∣iπ−1(k)

〉
.

One can show that each operator Pλ is indeed a projector, that Pλ Pµ = δλ µPλ , and that ∑λ`k Pλ = I. These
operators therefore define a measurement (POVM), and performing this measurement is known as weak
Schur sampling [56]. This can be implemented efficiently via a procedure which is known as generalized
phase estimation [90, 56] and generalizes the swap test [48] (cf. Section 4.1.1) and symmetrization [26].
Generalized phase estimation is based on the quantum Fourier transform (QFT) over Sk [31], which is a
unitary operation that performs a change of basis from {|π〉 : π ∈ Sk} to {|λ , i, j〉 : λ ` k,1≤ i, j ≤ dλ}.
It follows from basic representation theory that this makes sense, i. e., that ∑λ`k d2

λ
= k!.

The generalized phase estimation procedure proceeds as follows:

1. Start with a quantum state σ ∈B((Cd)⊗k).

2. Prepend a k!-dimensional ancilla register whose basis states correspond to triples |λ , i, j〉, initialized
in the state |(k),1,1〉 corresponding to the trivial irrep.

3. Apply the inverse quantum Fourier transform over Sk to the ancilla to produce the state

1√
k! ∑

π∈Sk

|π〉

(see, e. g., [31] for an explanation of this).

4. Apply the controlled permutation operation ∑π∈Sk
|π〉〈π|⊗Uπ , controlled on the ancilla.
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5. Apply the quantum Fourier transform over Sk to the ancilla and measure it, receiving outcome
(λ , i, j).

6. Output λ .

One can show [24, 90] that, on input σ , generalized phase estimation does indeed output λ with probability
tr(Pλ σ).22

It turns out that any test for a unitarily invariant property can, essentially, be taken to consist of
performing weak Schur sampling and classically post-processing the results.

Lemma 20. Let P⊆ B(Cd) be a unitarily invariant property. Assume there exists a tester which uses
k copies of the input state ρ , and accepts all states ρ ∈ P with probability at least 1− δ , but accepts
all states which are ε-far from P with probability at most 1− f (ε) for ε > 0. Then there exists a tester
with the same parameters which consists of performing weak Schur sampling on ρ⊗k and classically
postprocessing the results.

Proof. Let M be the measurement operator corresponding to the tester accepting, and for each ε , let ρε be
a state which is distance ε from P and achieves the worst-case probability of acceptance (so ρ0 is a state
in P with the lowest probability of acceptance, and for ε > 0, ρε is a state with the highest probability of
acceptance such that D(ρε ,P) = ε). Then, by the permutation invariance of ρ⊗k

ε , we have

tr(Mρ
⊗k
ε ) =

1
k! ∑

π∈Sk

tr(MUπρ
⊗k
ε U−1

π =: tr(Mρ
⊗k
ε ) ,

where we define

M =
1
k! ∑

π∈Sk

UπMU−1
π ,

and by the unitary invariance of P,

tr(Mρ
⊗k
0 )≤

∫
tr(M(Uρ0U−1)⊗k)dU = tr

(∫
U⊗kM(U−1)⊗kdU

)
ρ0 =: tr(Mρ0) ,

where the integral is taken according to Haar measure on U(d), and similarly

tr
(
Mρ

⊗k
ε

)
≥ tr

(
Mρ

⊗k
ε

)
for ε > 0. Therefore, it suffices to implement M to achieve the same parameters as M. But M commutes
with local unitaries and permutations of the k systems, so by Schur-Weyl duality we can write M =

∑λ αλ Pλ for some coefficients αλ ; as M is a measurement operator, for each λ it holds that 0≤ αλ ≤ 1.
So we can implement M by performing weak Schur sampling, obtaining outcome λ , and then accepting
with probability αλ .

22Some works describe the procedure as instead starting with a QFT and finishing with an inverse QFT [56, 130], but this
does not appear correct as the QFT should map from the group algebra of Sk to the space of irreps of Sk [31].
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Further, one can write down the probability of obtaining each outcome λ as follows: if the input state
ρ has eigenvalues (x1, . . . ,xd), then

tr(Pλ ρ
⊗k) = dλ sλ (x1, . . . ,xd) ,

where sλ is a Schur polynomial (see, e. g., [21] for a discussion). In principle, this allows one to calculate
the parameters of the optimal test for any unitarily invariant property; in practice, the calculations required
are somewhat daunting. Nevertheless, a careful analysis of the output distributions resulting from weak
Schur sampling was the approach taken by Childs et al. [56] to prove their bounds on the quantum
collision problem. Indeed, their approach is an example of how one can prove lower bounds on quantum
property testers more generally: first use symmetry arguments to prove that the optimal test must be of a
certain form, then analyse the optimal test directly.

5 Quantum testing of quantum properties: Dynamics

5.1 Unitary operators

In this section, we will consider quantum property testing of quantum dynamics, beginning with unitary
dynamics. We will imagine we are given black-box access to a unitary operator U , and we want to test
if U either has a certain property or is far from having it, by applying U a small number of times. This
setting is more complicated than that of testing properties of quantum states in that, rather than simply
performing a measurement on a number of copies of a state, we can consider more involved protocols
based on the use of U in a sequential, adaptive fashion.

There are a number of choices one needs to make when defining this model—in particular, what
distance measure to use, and whether or not to allow applications of controlled-U and/or U−1 as part of
the model. In Sections 5.1.1 and 5.1.2 we will discuss the effect of these choices. Next, we will discuss
a useful correspondence between quantum states and unitaries—the Choi-Jamiołkowski isomorphism—
which allows one to apply many of the algorithms developed for testing quantum states to unitaries.
Finally, in Sections 5.1.4-5.1.7 we will describe several known results on testing various properties of
unitary operators.

We continue to let U(d) denote the unitary group in d dimensions, and let M(d) denote the set of
d×d matrices. A property of unitary operators is simply a (discrete or continuous) subset P⊆U(d).

5.1.1 Distance measures

As compared with the case of pure states, it is less obvious which distance measure between unitary
operators is the right one to choose to obtain interesting property testing results. For quantum states,
the distinguishability of any two states is controlled by their trace distance. A natural way to generalize
this to unitary operations would be to maximize the distinguishability of the output states over all input
states,23 to produce

Dmax(U,V ) := max
|ψ〉

D(U |ψ〉,V |ψ〉) = max
|ψ〉

√
1−|〈ψ|U†V |ψ〉|2 .

23One might wonder whether distinguishability could be improved further by allowing the unknown unitary operator to act on
part of an entangled state; it turns out that this is not the case [166].
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Unfortunately, there are extremely simple properties which are hard to test with respect to this distance
measure. One such example is the Identity property: does an input unitary U satisfy U = eiθ I? (Note
that, as with the case of pure state properties, we allow an arbitrary phase θ in the definition, as U cannot
be distinguished from eiθU .) Consider the family of n-dimensional unitary operators Ui, i ∈ [n], where
Ui| j〉= (−1)δi j | j〉. Each of these has maximal distance from I, according to the distance measure Dmax.
However, a quantum algorithm which uses the input operator U k times and distinguishes between the
case where U is equal to the identity, and the case where U = Ui for some i, would imply a quantum
algorithm which computes the OR function of n input bits, promised to have Hamming weight at most 1,
using O(k) queries. As this problem is known to require Ω(

√
n) quantum queries [35], it follows that

k = Ω(
√

n). This is a lower bound on the complexity of identity-testing in an oracular setting; we discuss
a lower bound based on computational complexity arguments in Section 6.

It is perhaps not surprising that Dmax is not the right measure of distance to choose for property testing
problems, as it is a “best-case” rather than “average-case” measure. A suitable such alternative measure
can be defined as follows. For any d-dimensional operators A,B ∈M(d), let 〈A,B〉 denote the normalized
Hilbert-Schmidt inner product

〈A,B〉 :=
1
d

tr(A†B) =
1
d ∑

i, j
A∗i jBi j .

Assume that 〈A,A〉 = 〈B,B〉 = 1 (a property satisfied, for example, if A and B are unitary). Then the
distance between A and B is given by

D(A,B) :=
√

1−|〈A,B〉|2 .

For P⊆U(d), we analogously define

D(U,P) := inf
V∈P

D(U,V ) .

Note the close analogy to the distance between pure states (4.1). Indeed, we use the same notation as
for the distance D(|ψ〉, |φ〉) to highlight the fact that the distance for unitaries is naturally induced by
the distance for states. The distance measure D(A,B) seems to have been first explicitly introduced by
Low [119]; Wang [164] has defined a closely related alternative measure as D′(A,B) :=

√
1−|〈A,B〉|. As

D(A,B)/
√

2≤ D′(A,B)≤ D(A,B), the two measures are essentially interchangeable. For any operators
A and B such that 〈A,A〉= 〈B,B〉= 1, D(A,B) has the following properties.

• 0≤D(A,B)≤ 1, with D(A,B) = 0 if and only if A = eiφ B for some overall phase φ . As there exist
A 6= B with D(A,B) = 0, this implies that D(·, ·) is not a metric, but only a “pseudometric.” Further,
D(A,B) = D(WA,WB) = D(AW,BW ) for any unitary W .

• D(A,B) can alternatively be defined as

D(A,B) =
1√
2
‖A⊗A†−B⊗B†‖2 ,
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where ‖ · ‖2 is the normalized Schatten 2-norm [119]

‖M‖2 =

√√√√1
d

d

∑
i, j=1
|Mi j|2 .

Observe that this representation shows that D(·, ·) satisfies the triangle inequality.

• We have ‖M‖2
2 = 〈M,M〉. Therefore, ‖A−B‖2

2 = 〈A−B,A−B〉 = 2− 2Re〈A,B〉. This implies
that D(A,B)≤ ‖A−B‖2, via the elementary inequality 2Rez≤ |z|2 +1, valid for any z ∈ C.

The following justifies the claim that D(·, ·) is indeed an “average-case” measure of distance.

Proposition 21. Fix d-dimensional unitary operators U and V . Then∫
dψ D(U |ψ〉,V |ψ〉)2 =

d
d +1

D(U,V )2,

where the integral is taken according to Haar measure on pure states |ψ〉 ∈ Cd .

Proof. We have ∫
dψ D(U |ψ〉,V |ψ〉)2 = 1−

∫
dψ |〈ψ|U†V |ψ〉|2

= 1−
∫

dψtr[(U†V ⊗V †U)|ψ〉〈ψ|⊗2]

= 1− tr
[
(U†V ⊗V †U)

(
I +F

d(d +1)

)]
=

d
d +1

(
1−
∣∣∣∣ tr(U†V )

d

∣∣∣∣2
)

=
d

d +1
D(U,V )2 .

In the third equality we use the fact that∫
|ψ〉〈ψ|⊗2dψ = (I +F)/(d(d +1)) ,

where F is the flip (or swap) operator which interchanges two d-dimensional systems. The fourth
equality follows from the facts that, for any d-dimensional operators A, B, tr(A⊗B) = tr(A)tr(B) and
tr((A⊗B)F) = tr(AB).

The quantity ∫
dψ |〈ψ|U†V |ψ〉|2

appearing in the proof was previously introduced by Acín [8] as an average-case variant of the fidelity.
We will see in Section 5.1.3 below a number of properties, including the Identity property, which can be
tested efficiently with respect to the distance measure D(·, ·).
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5.1.2 Controlled and inverse unitaries

As well as being given access to a unitary operator U , we may be given access to the inverse U−1

and/or the controlled unitary c-U , or in other words the operator |0〉〈0|⊗ I + |1〉〈1|⊗U . This may be
a reasonable assumption if we would like to apply our property testing algorithm to a unitary operator
given in the form of a quantum circuit; on the other hand, it may not be reasonable in an adversarial
scenario where we only assume access to U as a black box.

For any U , V we have 〈c-U,c-V 〉= (1+ 〈U,V 〉)/2, implying

D(c-U,c-V ) =

√
1−
∣∣∣∣1+ 〈U,V 〉

2

∣∣∣∣2
=

1
2

√
3−2Re〈U,V 〉− |〈U,V 〉|2

=
1
2

√
‖U−V‖2

2 +D(U,V )2 .

Recalling that D(U,V )≤ ‖U−V‖2, we therefore have the inequalities

‖U−V‖2/2≤ D(c-U,c-V )≤ ‖U−V‖2/
√

2. (5.1)

Thus, given access to controlled unitaries, one can hope to design tests which are sensitive to the 2-norm
distance ‖U−V‖2. For example, if we are allowed access to controlled unitaries we can distinguish U
from −U (see the next section for how this can be done), whereas this is impossible given access to U
alone.

Being given access to U−1 can also be powerful. In particular, it allows us to apply the important
primitive of amplitude amplification [42] to property testing algorithms, in analogy to Section 2.2.1.
Imagine we have a test for a property P⊆U(d) which uses q copies of the input unitary U , and such that
for U ∈ P the test always accepts (it has perfect completeness), and for U ε-far from P, the test accepts
with probability at most f (ε). Then amplitude amplification allows us to test P with O(q/

√
f (ε)) copies

of U , rather than the O(q/ f (ε)) copies that would be required by simple repetition. For example, we
will see below that this gives a square-root speed-up for testing equality of unitary operators. In the
complexities we quote below, we assume that amplitude amplification has not been applied.

5.1.3 From properties of states to properties of unitaries

There is a correspondence between pure quantum states and unitary operators, which is known as (a
special case of) the Choi-Jamiołkowski isomorphism [58, 103] and will sometimes allow us to translate
tests for properties of states to tests for analogous properties of unitaries. Given access to U ∈U(d), we
first prepare the maximally entangled state of two d-dimensional systems

|Φ〉 :=
1√
d

d

∑
i=1
|i〉|i〉

and then apply U to the first system. We obtain the state |U〉 ∈ (Cd)⊗2 defined by

|U〉= 1√
d

d

∑
i, j=1

U ji| j〉|i〉 .
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The isomorphism is thus simply U ↔ |U〉. The state |U〉 faithfully represents the original operator U ; in
particular, it is easy to see that 〈U |V 〉= 〈U,V 〉 and hence D(U,V ) = D(|U〉, |V 〉). So, if we have a tester
for some property P of d2-dimensional quantum states, by applying the test to |U〉 we obtain a tester with
the same parameters for an analogous property P′ of d-dimensional unitary operators.

However, one sometimes has to be careful. Imagine we have a tester which accepts states with property
P with certainty, and accepts states which are ε-far away from having property P with probability at
most δ . Then, via the Choi-Jamiołkowski isomorphism, this translates into a tester which accepts unitary
matrices with property P′ with certainty, and accepts, with probability at most δ , unitaries which are ε-far
away from any matrix M with 〈M,M〉= 1 such that M has property P′. Therefore, in principle it could be
the case that U is far from any unitary matrix with property P′, but is close to some non-unitary matrix M
which has property P′. In this situation the tester might incorrectly accept. Nevertheless, in various cases
of interest one can show that this situation does not arise. In particular, we have the following lemma
(which generalizes similar claims in [91, 164]).

Lemma 22. Let P ⊆ M(d), and U ∈U(d). For M ∈ P such that 〈M,M〉 = 1, let M = AV be a polar
decomposition of M, with A =

√
MM† and V unitary. Then, if V ∈ P and D(U,M) = ε ,

D(U,P∩U(d))≤ 2ε .

Proof. We have

〈M,V 〉= 1
d

tr(
√

MM†) =
1
d
‖M‖1 =

1
d

max
W∈U(d)

|tr(WM)| ≥
√

1− ε2 ,

using the definition of the trace norm and that D(U,M) = ε . Thus

D(U,V )≤ D(U,M)+D(M,V )≤ 2ε .

The following are some examples where one can use the Choi-Jamiołkowski isomorphism to test
properties of unitary operators:

• The Equality to V property, where U satisfies the property if U = eiθV , for some θ . The test
creates the state |U〉 and measures in the basis {|V 〉〈V |, I− |V 〉〈V |}. Using the analysis of the
corresponding property for pure states, this property is testable with O(1/ε2) uses of U . A simple
special case of this is the previously discussed Identity property.

• The Equality property for pairs of unitary operators, where the pair U,V satisfies the property if
U = eiθV , for some θ . This can be tested by applying the swap test to |U〉 and |V 〉; again, the
analysis of the Equality property for states goes through unchanged, implying that this property is
testable with O(1/ε2) uses of U and V .

• The Inverses property, where U,V ∈U(d) satisfy the property if U = eiθV−1, for some θ . The
test is to create the state |UV 〉 with one use of each of U and V , then to test for equality to |Φ〉.
The probability of rejection is D(UV, I)2 = D(U,V−1)2, so if D(U,V−1) = ε , the test rejects with
probability ε2. Note that there is no need to have access to U−1 or V−1.
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• The Product property for unitary operators, where an operator U ∈U(dn) satisfies the property if
U =U1⊗U2⊗·· ·⊗Un for some U1, . . . ,Un ∈U(d). This can be tested by applying the product
test described in Section 4.1.2 to |U〉 [91]. One also needs to show that, if U is close to an operator
A ∈M(dn) such that A = A1⊗·· ·⊗An, U is in fact close to a unitary operator of this form; this
claim follows from Lemma 22. The final result is that if U is product the test accepts with certainty,
whereas if U is ε-far from product, the test rejects with probability Θ(ε2).

5.1.4 Membership of the Pauli and Clifford groups

Let B = {B1, . . . ,Bd2} be a unitary operator basis for the space of linear operators on d dimensions such
that B is orthonormal with respect to the normalized Hilbert-Schmidt inner product, i. e., 〈Bi,B j〉= δi j.
Then the set |Bi〉 forms an orthonormal basis for Cd2

with respect to the standard inner product, implying
that one can test membership of a unitary operator U in B with the following procedure, which we call
the operator basis test.

1. Create two copies of |U〉.

2. Measure each copy in the basis {|B1〉, . . . , |Bd2〉}.

3. Accept if both measurements give the same result.

The probability of getting outcome i from each measurement is independent and equal to |〈U,Bi〉|2. Thus,
if U = eiθ Bi for some i, then the test will accept with certainty. On the other hand, if minV∈B D(U,V ) = ε ,
the probability of getting the same measurement outcome twice is

d2

∑
i=1
|〈U,Bi〉|4 ≤max

i
|〈U,Bi〉|2

d2

∑
i=1
|〈U,Bi〉|2 = 1− ε

2 .

Therefore, by repeating the operator basis test and rejecting if any of the individual tests reject, the
property of Membership in B can be tested with O(1/ε2) uses of U .

A natural operator basis to which this test can be applied is the set of Pauli matrices on n qubits [132,
164], which form a basis for the space of linear operators on n qubits. This basis is orthonormal with
respect to the normalized Hilbert-Schmidt inner product. We call the corresponding basis for C22n

obtained
via the Choi-Jamiołkowski isomorphism the Pauli basis. The operator basis test can be immediately
applied to test whether an n-qubit operator is proportional to an n-qubit Pauli matrix, or is far from any
such matrix; we call this special case the Pauli test. As pointed out in [132], this is a natural quantum
generalization of the important classical property of linearity of Boolean functions [39] discussed in
Section 2.2.1. Given access to an oracle for f : {0,1}n→{0,1}, one can readily construct the diagonal
unitary operator U f where U f |z〉= (−1) f (z)|z〉, and also the controlled unitary operator c-U f ; it is easy to
see that f is linear (with respect to addition mod 2) if and only if U f is a tensor product of identity and Z
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operators. Further, if ` : {0,1}n→{0,1} is a Boolean function, the distance between c-U f and c-U` is

D(c-U f ,c-U`) =

√√√√1−

(
1
2
+

1
2n+1 ∑

z∈{0,1}n

(−1) f (z)+`(z)

)2

=
√

1− (1−|{z : f (z) 6= `(z)}|/2n)2

=
√

2d( f , `)−d( f , `)2 ,

where d( f , `) := |{x : f (x) 6= `(x)}|/2n is the normalized Hamming distance. This implies that the Pauli
test (for the special case of testing diagonal Pauli matrices) can be used to test linearity of Boolean
functions, recovering the O(1/ε) complexity of the classical tester discussed in Section 2.2.1, which can
be improved to O(1/

√
ε) via amplitude amplification.

The Pauli test can also be used as a subroutine in an algorithm for testing membership in the Clifford
group. The Clifford group Cn on n qubits is the normalizer of the Pauli group Pn, or in other words
the set Cn := {C ∈U(2n) : ∀P ∈ Pn,CPC−1 ∈ Pn}. The Clifford group plays an important role in many
areas of quantum information theory, including quantum error-correction and simulation of quantum
circuits [79, 134]. Wang [164] has shown that, given access to a unitary U and its inverse U−1, whether
U is a member of the Clifford group can be tested with O(1/ε2) uses of U and U−1; this result improves
a previous test of Low [119] by removing any dependence on n, and can in turn be improved to O(1/ε)
using amplitude amplification [42].

Wang’s test is very natural: pick a Pauli matrix P ∈ Pn uniformly at random, and apply the Pauli test
to the operator UPU−1. If U ∈ Cn, this test will always accept. Intuitively, if U is far from any Clifford
operator, then we expect that for most Pauli operators P, UPU−1 will be far from being a Pauli operator,
so repeating this test a constant number of times would suffice to detect this. Making this intuition precise
requires some work; see [164] for the details.

Question 9. Is there an efficient test for the property of membership in the Clifford group which does
not require access to U−1?

5.1.5 Testing commutativity

Say that U,V ∈U(d) satisfy the Commuting property if UV =VU . Assuming that we are given access
to the controlled operators c-U and c-V , consider the following tester for this property:

1. Create the states |c-Uc-V 〉, |c-V c-U〉 by applying controlled-U and controlled-V operations to the
first half of each of two maximally entangled states.

2. Apply the swap test to these states and accept if the test accepts.

If U and V commute, then c-U and c-V also commute, so |c-Uc-V 〉= |c-V c-U〉 and hence the swap
test accepts with certainty. On the other hand, if ‖UV −VU‖2 = ε , then by (5.1) the test rejects with
probability at least ε2/8. In order for this to be a good test for commutativity, we therefore need to
show that, if ‖UV −VU‖2 = ε , U and V are close to a pair of unitary operators Ũ , Ṽ such that Ũ and Ṽ
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commute. Precisely this result has recently been shown by Glebsky [74] in the form of the following
theorem, whose proof we omit.

Theorem 23 (Glebsky [74]). Let U,V ∈U(d) satisfy ‖UV −VU‖2 = ε . Then there exist Ũ ,Ṽ ∈U(d)
such that Ũ and Ṽ commute and ‖U−Ũ‖2 ≤ 30ε1/9, ‖V −Ṽ‖2 ≤ 30ε1/9.

The consequence is that the above tester rejects pairs (U,V ) such that U and V are ε-far from a pair
of commuting matrices with probability Ω(ε18). By repeating the test poly(1/ε) times, we obtain a tester
which rejects such pairs with constant probability.

Question 10. Is there an efficient test for commutativity which does not require access to the controlled
unitaries c-U , c-V , but just uses U and V ?

5.1.6 Testing quantum juntas

Analogously to the classical case of Boolean functions f : {0,1}n→ {0,1}, a unitary operation on n
qubits is said to be a k-junta if it acts non-trivially on at most k of the qubits, or in other words is of the
form US⊗ ISc , where U ∈U(2k) and S is a k-subset of [n]. Wang [164] has given a tester for whether
a unitary operator U is a k-junta, which turns out to be a direct generalization of the tester of Atıcı
and Servedio [20] for the classical property of a Boolean function being a k-junta (Section 2.2.3). The
work [132] had previously studied a different tester for being a 1-junta (“dictator”), but did not prove
correctness. Wang’s tester proceeds as follows:

1. Set W = /0.

2. Repeat the following procedure T times, for some T to be determined:

(a) Create the state |U〉 and measure in the Pauli basis, obtaining outcome s ∈ {I,X ,Y,Z}n.

(b) Update W ←W ∪{i : si 6= I}.
(c) If |W |> k, reject.

3. Accept.

To show correctness of this test, it suffices to prove the following claim:

Theorem 24 (Wang [164]). If U is ε-far from any k-junta, and T = Θ(k/ε2), the above procedure accepts
with probability at most 1/3.

The result originally shown by Wang [164] was a somewhat worse bound of T = Θ(k log(k/ε)/ε2),
but the bound can be improved to Θ(k/ε2) via a straightforward generalization of the analysis of Atıcı
and Servedio [20], as we now show (cf. Section 2.2.3). If we are given access to U−1 as well, the bound
can be improved further to T = Θ(k/ε) via amplitude amplification.

Proof. As the Pauli matrices form a basis for the space of n-qubit operators, we can expand

U = ∑
s∈{I,X ,Y,Z}n

Ûsσs ,
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where σs is the n-qubit Pauli operator corresponding to the string s, and Ûs ∈ C. Pauli matrices are
orthonormal with respect to the normalized Hilbert-Schmidt inner product, implying that

∑
s∈{I,X ,Y,Z}n

|Ûs|2 = 1 .

Assume that U is ε-far from any unitary operator V that is a k-junta, and for s ∈ {I,X ,Y,Z}n, let
supp(s) := {i : si 6= I}. Then, for any subset W ⊆ [n] of size at most k,

wW := ∑
s:supp(s)⊆W

|Ûs|2 ≤ 1− ε
2/4 .

To see this, assume the opposite and consider the operator

MW = w−1/2
W ∑

s,supp(s)⊆W
Ûsσs .

Then MW is a k-junta, 〈MW ,MW 〉= 1, and D(U,MW ) = (1−wW )1/2 < ε/2. Further, the unitary matrix V
occurring in a polar decomposition of M is also a k-junta. So, by Lemma 22, D(U,V )≤ ε , contradicting
that U is ε-far from any unitary k-junta.

For each measurement, the probability that a string s is returned such that supps *W is therefore
at least ε2/4. Thus the expected number of measurements required to find k+1 such indices is at most
4(k+1)/ε2. The theorem then follows from Markov’s inequality.

5.1.7 Other properties of unitary matrices

We finish this section by mentioning a few other properties of unitary matrices which have fairly
straightforward testers. Say that a unitary matrix U satisfies the Diagonality property if Ui j = 0 for i 6= j.
Consider the following easy tester for this property: Apply U to a uniformly random computational
basis state |i〉, measure in the computational basis, and accept if and only if the outcome is i. Writing
Ukk = rkeiγk for rk ≥ 0 and 0≤ θk < 2π , we have

max
D diagonal

|〈U,D〉|= 1
d

max
D diagonal

∣∣∣∣∣ d

∑
k=1

U∗kkDkk

∣∣∣∣∣= 1
d

max
θk

∣∣∣∣∣ d

∑
k=1

rkei(θk−γk)

∣∣∣∣∣= 1
d

∣∣∣∣∣ d

∑
k=1

rk

∣∣∣∣∣= 1
d

d

∑
k=1
|Ukk| .

On the other hand, the probability of accepting is precisely

1
d

d

∑
k=1
|Ukk|2 ≤

1
d

max
k
|Ukk|

d

∑
k=1
|Ukk| ≤

1
d

d

∑
k=1
|Ukk| .

Thus, if the test accepts with probability 1−δ , U is distance at most
√

2δ from a diagonal unitary matrix
D, implying that Diagonality can be ε-tested with O(1/ε2) uses of U .

This tester is simple, but can be applied to the following more general problem: Given a basis B for Cd ,
is every vector in B an eigenvector of U? This is equivalent to asking whether VUV−1 is diagonal, where
V is the change of basis matrix for B. This problem can be solved by applying the test for diagonality to
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VUV−1, noting that the distance of VUV−1 from the nearest diagonal matrix is the same as the distance
of U from the nearest matrix Ũ such that every vector in B is an eigenvector of Ũ . For example, this
allows us to test U for being a Circulant matrix (i. e., a matrix of the form Uxy = f (x− y) for some
f : {0, . . . ,d−1}→ C, where subtraction is understood modulo d) as such matrices are characterized by
being diagonalized by the quantum Fourier transform over Zd .

Finally, Wang [164] has proven that membership of a unitary operator U ∈U(d) in the orthogonal
group O(d) := {M ∈M(d) : MMT = I} can be ε-tested with O(1/ε2) uses of U . The tester is based on
applying U⊗U to |Φ〉, which produces the state

∣∣UUT
〉
, then performing the measurement {|Φ〉〈Φ|, I−

|Φ〉〈Φ|}. (Recall that |Φ〉= (1/
√

d)∑
d
i=1 |i〉|i〉.) If U ∈ O(d), the test always accepts; Wang shows that

if the test accepts with high probability, then U is close to an orthogonal matrix.

5.2 Properties of quantum channels

Not all physical processes which occur in quantum mechanics are reversible. The mathematical framework
in which the most general physically realizable operations are studied is the formalism of quantum
channels. A quantum channel (or “superoperator”) is a completely positive, trace-preserving linear map
E : B(Cdin)→B(Cdout). Here “completely positive” means that the operator E⊗ id preserves positivity,
where id is the identity map on some ancilla system of arbitrary dimension. A comprehensive introduction
to the world of quantum channels is provided by lecture notes of Watrous [166].

There has been less work on testing properties of quantum channels than the other types of properties
considered above, although the problem of discriminating between quantum channels has been considered
by a number of authors (e.g. [151, 65, 141]).

5.2.1 A distance measure on channels

In the context of property testing, the first task when considering quantum channels is to define a suitable
measure of distance. One approach is to use the same idea as for unitary operators, and take the distance
induced by the Choi-Jamiołkowski isomorphism [58, 103]. In the case of channels, this isomorphism
states that there is a bijection between the set of quantum channels E : B(Cdin)→B(Cdout) and the set of
bipartite density matrices ρ on a (dout×din)-dimensional system such that applying the partial trace to
the first subsystem of ρ leaves the maximally mixed state I/din. The bijection can be explicitly given as

E↔ 1
din

din

∑
i, j=1

E(|i〉〈 j|)⊗|i〉〈 j|=: χE .

Then one distance measure that can be put on quantum channels E, F is

D(E,F) := D(χE,χF) .

As with the correspondence between unitary operators and pure states, this distance measure allows one to
translate tests for properties of mixed states to properties of channels. For example, consider the property
Unitarity, where E : B(Cd)→ B(Cd) satisfies the property if and only if it is a unitary operator. E is
unitary if and only if χE is a pure state (and hence maximally entangled). In order to test this property, we
can apply the test for Purity of mixed states to χE. From the analysis of Section 4.2, we see that if the
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test accepts with probability 1−δ , there exists a pure state |ψ〉 such that D(χE, |ψ〉〈ψ|) = O(δ ). We still
need to show that χE is in fact close to a pure state which is maximally entangled. To do so, first write

|ψ〉=
d

∑
i=1

√
λi|vi〉|wi〉

for the Schmidt decomposition of |ψ〉, and define the maximally entangled state

|η〉= 1√
d

d

∑
i=1
|vi〉|wi〉 .

Then we have the sequence of inequalities and equalities

D(χE, |ψ〉〈ψ|) ≥ D(I/d, trB(|ψ〉〈ψ|))≥ 1−F (I/d, trB(|ψ〉〈ψ|)) = 1− 1√
d

d

∑
i=1

√
λi

= 1−|〈ψ|η〉| ≥ D(|ψ〉〈ψ|, |η〉〈η |)2/2 .

The first inequality holds because the trace norm does not increase under partial trace [134, Theorem 9.2],
and the second is (4.3). Therefore, if the test accepts with probability 1−δ ,

D(χE, |η〉〈η |)≤ D(χE, |ψ〉〈ψ|)+D(|ψ〉〈ψ|, |η〉〈η |) = O(δ +
√

2δ ) = O(
√

δ ) ,

implying that Unitarity of a quantum channel can be ε-tested with O(1/ε2) uses of the channel.

5.2.2 Testing quantum measurements

An important special case of quantum channels is the case of quantum measurements. In full generality, a
measurement on a d-dimensional quantum mechanical system is defined by a sequence of linear operators
M = (M1, . . . ,Mk) such that ∑

k
i=1 M†

i Mi = I. If M is performed on the state ρ , the probability of receiving
outcome i is tr(MiρM†

i ), and the resulting state of the system, given that outcome i occurred, is

ρi =
MiρM†

i

tr(MiρM†
i )

.

The quantum channel corresponding to performing the measurement M and storing the outcome in a new
register is the map M where

M(ρ) =
k

∑
i=1

MiρM†
i ⊗|i〉〈i| ,

so the Choi-Jamiołkowski state is

χM =
1
d

d

∑
i, j=1

(
k

∑
`=1

M`|i〉〈 j|M†
` ⊗|`〉〈`|

)
⊗|i〉〈 j|
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which, by reordering subsystems, is equivalent to

k

∑
`=1

(
1√
d

d

∑
i=1

M`|i〉|i〉
)(

1√
d

d

∑
j=1

M†
` 〈 j|〈 j|

)
⊗|`〉〈`|=:

k

∑
`=1
|ψ(`)

M 〉〈ψ
(`)
M |⊗ |`〉〈`| .

For any two measurements M and N with at most k outcomes, we can therefore compute the distance
between the corresponding channels as

D(M,N) =
k

∑
`=1

D
(∣∣∣ψ(`)

M

〉
,
∣∣∣ψ(`)

N

〉)
,

where if M (resp. N) has ` < k outcomes, we set Mi = 0 (resp. Ni = 0) for ` < i≤ k. Observe that, using
this measure of distance, we take into account the distance of the post-measurement states as well as the
distance between the probability distributions corresponding to the measurement outcomes. One can
explicitly calculate that, for any (potentially unnormalized) vectors |ψ〉, |φ〉,

D(|ψ〉, |φ〉) =
√

1
4
(〈ψ|ψ〉+ 〈φ |φ〉)2−|〈ψ|φ〉|2 ,

which implies that

D(M,N) =
1
2

k

∑
i=1

√
(〈Mi,Mi〉+ 〈Ni,Ni〉)2−4|〈Mi,Ni〉|2 .

Recent work by Wang [165] has given efficient tests for a number of properties of quantum measurements,
but with respect to a measure of distance which appears somewhat different to the measure D(·, ·). Given
two measurements M and N with at most k outcomes, Wang’s distance measure is

∆(M,N) :=

√
1
2

k

∑
i=1
〈Mi,Mi〉+ 〈Ni,Ni〉−2|〈Mi,Ni〉| .

Wang demonstrates that ∆(·, ·) has a number of desirable properties, including satisfying the triangle
inequality and being an “average-case” measure of distance [165]. It turns out that ∆(·, ·) is in fact closely
related to D(·, ·), which we encapsulate as the following lemma.

Lemma 25. Given two measurements M and N, let M and N be the corresponding channels. Then

D(M,N)/
√

2≤ ∆(M,N)≤ D(M,N)1/2 .

Proof. To prove the upper bound part of the lemma, it suffices to show that, for each i,

(〈Mi,Mi〉+ 〈Ni,Ni〉−2|〈Mi,Ni〉|)2 ?
≤ (〈Mi,Mi〉+ 〈Ni,Ni〉)2−4|〈Mi,Ni〉|2 .

Setting xi = 〈Mi,Mi〉+ 〈Ni,Ni〉, yi = 2|〈Mi,Ni〉| and rearranging terms, we get the claimed inequality

(xi− yi)
2 ?
≤ (xi− yi)(xi + yi) ,
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which holds because yi ≤ xi by Cauchy-Schwarz or the inequality of arithmetic and geometric means.
For the lower bound, we need to show

1
2
√

2

k

∑
i=1

(xi− yi)
1/2(xi + yi)

1/2 ?
≤

√
1
2

k

∑
i=1

(xi− yi) .

Indeed, by Cauchy-Schwarz,

1
2
√

2

k

∑
i=1

(xi− yi)
1/2(xi + yi)

1/2 ≤ 1
2
√

2

√
k

∑
i=1

(xi− yi)

√
k

∑
i=1

xi + yi

≤

√
1
2

k

∑
i=1

(xi− yi)

√
1
2

k

∑
i=1

xi

=

√
1
2

k

∑
i=1

(xi− yi)

as required, using ∑
k
i=1〈Mi,Mi〉= ∑

k
i=1〈Ni,Ni〉= 1.

Lemma 25 implies that Wang’s results with respect to the distance measure ∆(·, ·) can be translated
into results with respect to D(·, ·). In particular, Wang [165] gives efficient testers for the following
properties of quantum measurements:

• The property of being a Pauli measurement (called “stabilizer measurement” in [165]): M is a
Pauli measurement if it is a two-outcome projective measurement onto the ±1 eigenspaces of an
n-qubit Pauli operator σs, for some s ∈ {I,X ,Y,Z}n. Wang shows that this property can be ε-tested
with O(1/ε4) measurements.

• The property of being an `-local measurement of n qubits, i. e., acting non-trivially on at most `
qubits. Wang gives an ε-tester for this property which uses O(` log(`/ε)/ε2) measurements.

• The property of being a Permutation invariant measurement of n d-dimensional systems, i. e., a
measurement which is unchanged when the n systems are permuted arbitrarily. This property can
be ε-tested with O(1/ε2) measurements.

• Being contained within any finite set of measurements S = {Mi} with k outcomes on a d-
dimensional system. If ∆(Mi,M j) ≥ γ for all i 6= j, and we set δ = min{γ,ε}, membership
in S can be ε-tested with O(k2(logk)/δ 8 +(log |S|)/δ 2) measurements.

• Equality of measurements, which can be ε-tested with O(k5(logk)/ε12) measurements. This is
based on a more general algorithm for estimating the distance between measurements.

All of the above testers are based on constructing multiple copies of the Choi-Jamiołkowski state
corresponding to the measurement to be tested, and performing some measurements on the states. As
remarked in [165], it is an interesting question whether efficient testers can be designed in a setting where
one is not allowed access to entanglement.
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Question 11. Can efficient testers for the properties of unitary operators and quantum channels discussed
above be designed which do not require entanglement with an ancilla system?

It is possible to use quantum process tomography to completely characterize any quantum channel
without the use of entanglement [134, §8.4.2], so the question is only whether the above properties can
still be tested efficiently in this setting.

6 Quantum properties and computational complexity

Classically, the field of property testing has had close connections to computational complexity. In this
section, we briefly discuss three ways in which quantum property testing can be related to quantum
computational complexity. First, we discuss how, if we change the setting in which we work, testing
certain natural properties can be proven computationally hard. Second, we mention how quantum property
testers can be used to prove complexity class inclusions. Finally, we consider potential connections
between quantum property testing and a proposed quantum PCP conjecture.

6.1 Computational hardness of testing quantum properties

A different perspective from which to study the question of testing properties of quantum systems is to
consider problems where, instead of being given access to a quantum object, we are given a concise
classical description of that object (for example, a quantum circuit on n qubits with poly(n) gates). Our
aim is to efficiently determine whether the corresponding quantum object has some property, or is far
from having that property, in terms of some distance measure. The distance measure used may be quite
different to the distances we discuss in the rest of the survey, leading to qualitatively different results.
This type of problem turns out to be naturally addressed via the framework of computational complexity.

In particular, many problems related to testing properties of quantum circuits turn out to be QMA-
complete.24 These hardness results provide an interesting counterpoint to the largely positive results
obtained in the “average-case” scenarios considered by property testing. A prototypical example of this
phenomenon is “non-identity-check,” which was proven to be QMA-complete by Janzing et al. [104].
Here the input is a quantum circuit implementing a unitary U , and two numbers a, b such that b−a≥
1/poly(n), and the problem is to distinguish between the two cases that minθ∈R ‖U − eiθ I‖ ≤ a and
minθ∈R ‖U − eiθ I‖ ≥ b. Observe that, if we replace the operator norm with the normalized 2-norm in
this definition, this problem is in BQP by the efficient tester for the Equality to V property discussed in
Section 5.1.3.

If one generalizes to quantum circuits acting on mixed states, where each elementary gate is a
quantum channel, some natural problems even become PSPACE-complete. In particular, Rosgen and
Watrous [150] showed that PSPACE-completeness holds for the problem of testing whether two mixed-
state quantum circuits are distinguishable, and it remains hard when the quantum circuits are restricted
to be logarithmic depth [148], degradable or anti-degradable [149]. In this case, distinguishability is
measured in the so-called diamond norm for quantum channels [110]; the diamond norm of an linear

24QMA is the quantum analog of NP [110]; see [40] for a recent survey.
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operator Φ : B(Cdin)→B(Cdout) is defined to be

‖Φ‖� := max
X ,‖X‖1=1

‖(Φ⊗ id)(X)‖1 , (6.1)

where id is the identity map acting on an ancilla system, which may be taken to be of dimension at
most din. Then the Quantum Circuit Distinguishability problem is to determine, given two mixed-state
quantum circuits Q0, Q1 and constants a < b, whether ‖Q0−Q1‖� ≤ a or ‖Q0−Q1‖� ≥ b. As with the
trace distance between quantum states, ‖Q0−Q1‖� can be seen as measuring the distinguishability of
Q0 and Q1 in a “best-case” scenario. This contrasts with the “average-case” distance measure D(Q0,Q1)
introduced in Section 5.2.1.

These distinguishability problems were originally shown to be hard for the complexity class QIP
of languages decided by quantum interactive proof systems, but this class was later proven to equal
PSPACE [102]. The proof technique of [150] starts by using a result of Kitaev and Watrous [111],
which states that all quantum interactive proofs can be parallelized to three rounds. A mathematical
reformulation of this result is that the Close Images problem is QIP-hard. This problem is defined as
follows: given two quantum circuits Q0, Q1 and constants a < b, distinguish between the cases that there
is an input ρ such that F(Q0(ρ),Q1(ρ))≥ b, or that for all inputs ρ , F(Q0(ρ),Q1(ρ))≤ a. Hardness of
Quantum Circuit Distinguishability is then shown by a reduction from Close Images [150].

6.2 From quantum property testers to complexity class inclusions

By contrast to the results in the previous section, work by Hayden et al. [93] demonstrates that quantum
property testers can be used to prove positive results (i. e., upper bounds) regarding the complexity of
testing properties of quantum circuits. The problem considered by these authors is a variant of the
separability-testing problem (cf. Sections 4.1.2 and 4.2). In this variant the input is the description of
a mixed-state quantum circuit Q on n qubits, and one considers the output of the circuit as a bipartite
state by dividing these qubits into two disjoint sets. The problem is to distinguish between the two
cases that: (a) the output of Q, when applied to the input |0n〉, is close to separable; (b) the output is far
from separable. Hayden et al. [93] show that this problem can be solved by a quantum interactive proof
system with two messages (i. e., a message from verifier to prover, followed by a reply from prover to
verifier), and hence sits in the complexity class QIP(2). The protocol is based on the verifier applying
the permutation test discussed in Section 4.1.1. This result is somewhat subtle in that “close” and “far”
are defined asymmetrically (the former in terms of the trace distance, the latter in terms of the so-called
“1-way LOCC” distance); see [93] for details.

More recently Gutoski et al. [85] generalized this work: for almost every complexity class defined
by quantum interactive proofs, they give a version of the separability testing problem which is complete
for that class. This shows that property testing problems can be used to characterize many quantum
complexity classes. For example, they use the product test of [91] (see Section 4.1.2) to show that testing
whether the output of a pure-state quantum circuit is a product state is in BQP.

6.3 The quantum PCP conjecture

A classic and important problem in quantum computational complexity is the local Hamiltonian problem.
Here we are given as input a Hamiltonian H on n qubits, described by a set of Hermitian operators Hi such

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 7 (2016), pp. 1–81 64

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


A SURVEY OF QUANTUM PROPERTY TESTING

that H = ∑
m
i=1 Hi, with each operator Hi acting non-trivially on at most k = O(1) qubits and satisfying

‖Hi‖= O(1). We are also given two real numbers a and b such that b−a≥ 1/poly(n). We are promised
that the lowest eigenvalue of H is either smaller than a, or larger than b; our task is to determine which of
these is the case.

This problem was proven QMA-complete for k = 5 by Kitaev [110], which was later improved to
k = 2 by Kempe et al. [108] (the case where k = 1 is easily seen to be in P). One way in which this
hardness result could potentially be improved is in the scaling of the gap between b and a. Indeed, it could
be the case that the local Hamiltonian problem remains QMA-hard if we have the promise b−a≥ cm for
some constant 0 < c < 1. This is (one formulation of) the quantum PCP conjecture; see a recent survey
of Aharonov et al. [10] for much more on this conjecture and its implications. Classically, one version
of the famous PCP Theorem states that there exist constraint satisfaction problems for which it is hard
to distinguish between there existing an assignment to the variables that satisfies all of the constraints,
and there being no assignment that satisfies more than a constant fraction of them; the quantum PCP
conjecture would be a direct quantization of this result. One way of looking at this is as the conjecture
that the local Hamiltonian problem remains hard in a “property-testing-type” scenario where there is a
large gap between “yes” and “no” instances.

Question 12. Is there a quantum PCP theorem?

Classically, the proof of the PCP Theorem relied on efficient property testers, so it seems plausible that
property testing could be useful in proving a quantum generalization. Indeed, the analysis of a classical
property tester in a quantum setting has recently been central to establishing a quantum complexity-
theoretic result. MIP is the class of languages decided by multiple-prover interactive proof systems,
which was shown to be equal to NEXP by Babai et al. [23]. Recently Ito and Vidick [101] have shown
that the quantum generalization MIP∗, where the provers are allowed to share entanglement, is at least as
powerful: MIP⊆MIP∗. Their proof is based on proving soundness of the classical multilinearity test
of Babai et al. [23] in the presence of entanglement. Another application of quantum property testing
to quantum complexity is the use of the analysis of an efficient quantum property tester to prove the
complexity class equality QMA(k) = QMA(2) [91], as discussed in Section 4.1.2.

Yet another connection is explored in recent work of Aharonov and Eldar [11] on a quantum
generalization of locally testable codes (LTCs). Classically, LTCs are codes for which the property of
being a codeword can be tested efficiently by means of a few local checks; such codes played a crucial
role in the original proof of the PCP Theorem [19]. The “qLTCs” studied in [11] are the kernel (zero
eigenspace) of k-local Hamiltonians H = ∑i Hi, such that containment of a state in the eigenspace can be
tested with good accuracy by performing measurements corresponding to only a few of the individual
k-local terms Hi. Aharonov and Eldar [11] prove some surprising upper bounds on the soundness for
qLTCs that are stabilizer codes, showing that they do not exist in certain regimes of parameters where
classical LTCs do exist.

7 Conclusion

The goal of property testing is to design efficient algorithms (“testers”) to decide whether a given object
has a property or is somehow “far” from that property, and to determine in which cases such algorithms
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can exist. When the objects that need to be tested are very large, exact algorithms that are also required to
work for objects that “almost” have the property become infeasible, and property testing is often the best
we can hope for. Classical property testing is by now a very well-developed area, but quantum property
testing is just starting out. In this paper we surveyed what is known about this:

1. Quantum testers for classical properties (Section 2).

2. Classical testers for quantum properties (Section 3).

3. Quantum testers for quantum properties (Sections 4 and 5).

We hope the overview given here, as well as the open questions mentioned along the way, will give
rise to much more research in this area. Besides the properties mentioned here, there are many other
properties which have been of great interest in the classical property testing literature, and whose quantum
complexity is unknown. Examples include monotonicity of Boolean functions, membership of error-
correcting codes, and almost all properties of graphs. In the case of quantum properties, natural targets
include testing whether a unitary operator is implemented by a small circuit, and whether a Hamiltonian
is k-local (which would be yet another variant of junta testing).

Another very broad open question not discussed previously is to what extent one can characterize
the properties (classical or quantum) that have efficient quantum testers. This may seem a hopelessly
ambitious goal; nevertheless, in the case of classical algorithms it has already been achieved in some
important cases, such as graph properties [13] and symmetric properties of probability distributions [160].
Such a characterization could have importance far beyond property testing, by shedding light on the
structure of problems that have efficient quantum algorithms.
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